3,293
Views
8
CrossRef citations to date
0
Altmetric
Review Articles

Enhancing plastic biodegradation process: strategies and opportunities

ORCID Icon, , , , & ORCID Icon
Pages 477-494 | Received 25 Mar 2022, Accepted 03 Jan 2023, Published online: 14 Feb 2023

References

  • Geyer R, Jambeck JR, Law KL. Production, use, and fate of all plastics ever made. Sci Adv. 2017;3(7):e1700782.
  • Salwa HN, Sapuan SM, Mastura MT, et al. Green bio composites for food packaging. Int J Recent Technol Eng. 2019;8:450–459.
  • Parashar N, Hait S. Plastics in the time of COVID-19 pandemic: protector or polluter? Sci Total Environ. 2021;759:144274.
  • Patrício Silva AL, Prata JC, Walker TR, et al. Increased plastic pollution due to COVID-19 pandemic: challenges and recommendations. Chem Eng J. 2021;405:126683.
  • Sharma S, Chatterjee S. Microplastic pollution, a threat to marine ecosystem and human health: a short review. Environ Sci Pollut Res. 2017;24(27):21530–21547.
  • Zhang J, Wang X, Gong J, et al. A study on the biodegradability of polyethylene terephthalate fiber and diethylene glycol terephthalate. J Appl Polym Sci. 2004;93(3):1089–1096.
  • González Henao S, Ghneim-Herrera T. Heavy metals in soils and the remediation potential of bacteria associated with the plant microbiome. Front Environ Sci. 2021;9:604216.
  • Mohanan N, Montazer Z, Sharma PK, et al. Microbial and enzymatic degradation of synthetic plastics. Front Microbiol. 2020;11:580709.
  • Shilpa NB, Meena SS. Microbial biodegradation of plastics: challenges, opportunities, and a critical perspective. Front Environ Sci Eng. 2022;16:161.
  • Zhang Y, Pedersen JN, Eser BE, et al. Biodegradation of polyethylene and polystyrene: from microbial deterioration to enzyme discovery. Biotechnol Adv. 2022;60:107991.
  • Liu X, Gao C, Sangwan P, et al. Accelerating the degradation of polyolefins through additives and blending. J Appl Polym Sci. 2014;131(18):40750.
  • Jeyakumar D, Chirsteen J, Doble M. Synergistic effects of pretreatment and blending on fungi mediated biodegradation of polypropylenes. Bioresour Technol. 2013;148:78–85.
  • Kundungal H, Gangarapu M, Sarangapani S, et al. Role of pretreatment and evidence for the enhanced biodegradation and mineralization of low-density polyethylene films by greater waxworm. Environ Technol. 2021;42:717–730.
  • Esmaeili A, Pourbabaee AA, Alikhani HA, et al. Biodegradation of low-density polyethylene (LDPE) by mixed culture of Lysinibacillus xylanilyticus and Aspergillus Niger in soil. PLOS One. 2013;8(9):e71720.
  • Arkatkar A, Arutchelvi J, Bhaduri S, et al. Degradation of unpretreated and thermally pretreated polypropylene by soil consortia. Int Biodeterior Biodegrad. 2009;63(1):106–111.
  • Hadad D, Geresh S, Sivan A. Biodegradation of polyethylene by the thermophilic bacterium Brevibacillus borstelensis. J Appl Microbiol. 2005;98(5):1093–1100.
  • Fernando SS, Christensen PA, Egerton TA, et al. Carbon dioxide evolution and carbonyl group development during photodegradation of polyethylene and polypropylene. Polym Degrad Stab. 2007;92(12):2163–2172.
  • Yousif E, Hasan A. Photostabilization of poly(vinyl chloride) – still on the run. J Taibah Univ Sci. 2015;9(4):421–448.
  • Yousif E, Haddad R. Photodegradation and photostabilization of polymers, especially polystyrene: review. Springerplus. 2013;2(1):398.
  • Chamas A, Moon H, Zheng J, et al. Degradation rates of plastics in the environment. ACS Sustain Chem Eng. 2020;8:3494–3511.
  • Oswald HJ, Turi E. The deterioration of polypropylene by oxidative degradation. Polym Eng Sci. 1965;5(3):152–158.
  • Sang T, Wallis CJ, Hill G, et al. Polyethylene terephthalate degradation under natural and accelerated weathering conditions. Eur Polym J. 2020;136:109873.
  • Manzur A, Limón-González M, Favela-Torres E. Biodegradation of physicochemically treated LDPE by a consortium of filamentous fungi. J Appl Polym Sci. 2004;92(1):265–271.
  • Balasubramanian V, Natarajan K, Rajeshkannan V, et al. Enhancement of in vitro high-density polyethylene (HDPE) degradation by physical, chemical, and biological treatments. Environ Sci Pollut Res. 2014;21(21):12549–12562.
  • Margandan MM. Growth of Actinomycetes and Pseudomonas sp., biofilms on abiotically pretreated polypropylene surface. Eur J Zool Res. 2014;3:6–17.
  • Falkenstein P, Gräsing D, Bielytskyi P, et al. UV pretreatment impairs the enzymatic degradation of polyethylene terephthalate. Front Microbiol. 2020;11:689.
  • Yoshida S, Hiraga K, Takehana T, et al. A bacterium that degrades and assimilates poly(ethylene terephthalate). Science. 2016;351(6278):1196–1199.
  • Montazer Z, Najafi MBH, Levin DB. Microbial degradation of low-density polyethylene and synthesis of polyhydroxyalkanoate polymers. Can J Microbiol. 2019;65(3):224–234.
  • Aravinthan A, Arkatkar A, Juwarkar AA, et al. Synergistic growth of Bacillus and Pseudomonas and its degradation potential on pretreated polypropylene. Prep Biochem Biotechnol. 2016;46:109–115.
  • Arkatkar A, Juwarkar AA, Bhaduri S, et al. Growth of Pseudomonas and Bacillus biofilms on pretreated polypropylene surface. Int Biodeterior Biodegrad. 2010;64(6):530–536.
  • Awasthi S, Srivastava N, Singh T, et al. Biodegradation of thermally treated low density polyethylene by fungus Rhizopus oryzae NS 5. 3 Biotech. 2017;7(1):73.
  • Sudhakar M, Doble M, Murthy PS, et al. Marine microbe-mediated biodegradation of low- and high-density polyethylenes. Int Biodeterior Biodegrad. 2008;61(3):203–213.
  • Chatterjee S, Roy B, Roy D, et al. Enzyme-mediated biodegradation of heat treated commercial polyethylene by Staphylococcal species. Polym Degrad Stab. 2010;95(2):195–200.
  • Awasthi S, Srivastava P, Singh P, et al. Biodegradation of thermally treated high-density polyethylene (HDPE) by Klebsiella pneumoniae CH001. 3 Biotech. 2017;7(5):332.
  • Motta O, Proto A, De Carlo F, et al. Utilization of chemically oxidized polystyrene as co-substrate by filamentous fungi. Int J Hyg Environ Health. 2009;212(1):61–66.
  • Mijovic JS, Koutsky JA. Etching of polymeric surfaces: a review. Polym Plast Technol Eng. 1977;9(2):139–179.
  • Abiona A, Osinkolu AG. Gamma-irradiation induced property modification of polypropylene. Int J Phys Sci. 2010;5:960–967.
  • Sheik S, Chandrashekar KR, Swaroop K, et al. Biodegradation of gamma irradiated low density polyethylene and polypropylene by endophytic fungi. Int Biodeterior Biodegrad. 2015;105:21–29.
  • Abourayana H, Dowling D. Plasma processing for tailoring the surface properties of polymers. In: Surf energy; 2015. p. 123–152.
  • Ebnesajjad S. Chapter 8 – surface treatment of polyvinyl fluoride films and coatings. In: Ebnesajjad S, editor. Polyvinyl fluoride. Norwich: William Andrew Publishing; 2013. p. 193–212.
  • Pionteck J, Wypych G. Chapter 10 – antistatic agent incorporation method and its performance. In: Pionteck J, Wypych G, editors. Handbook of antistatics. 2nd ed. Toronto: ChemTec Publishing; 2016. p. 129–139.
  • Gómez-Méndez LD, Moreno-Bayona DA, Poutou-Piñales RA, et al. Biodeterioration of plasma pretreated LDPE sheets by Pleurotus ostreatus. PLOS One. 2018;13(9):e0203786.
  • Lee B, Pometto AL, Fratzke A, et al. Biodegradation of degradable plastic polyethylene by Phanerochaete and Streptomyces species. Appl Environ Microbiol. 1991;57(3):678–685.
  • Hahladakis JN, Velis CA, Weber R, et al. An overview of chemical additives present in plastics: migration, release, fate and environmental impact during their use, disposal and recycling. J Hazard Mater. 2018;344:179–199.
  • Hunt TP. Polymer additives: supercritical fluid chromatography. In: Wilson ID, editor. Encyclopedia of separation science. Oxford: Academic Press; 2000. p. 3901–3906.
  • Chiellini E, Corti A, D'Antone S, et al. Oxo-biodegradable carbon backbone polymers – oxidative degradation of polyethylene under accelerated test conditions. Polym Degrad Stab. 2006;91(11):2739–2747.
  • Lukanina YK, Popov AA, Khvatov AV. Biodegradation of polymer compositions with pro-oxidants. Proceedings of the IOP Conference Series: Materials Science and Engineering; 2020. p. 12016.
  • Roy PK, Titus S, Surekha P, et al. Degradation of abiotically aged LDPE films containing pro-oxidant by bacterial consortium. Polym Degrad Stab. 2008;93(10):1917–1922.
  • Roy PK, Surekha P, Rajagopal C, et al. Effect of cobalt carboxylates on the photo-oxidative degradation of low-density polyethylene. Part-I. Polym Degrad Stab. 2006;91(9):1980–1988.
  • Erlandsson B, Karlsson S, Albertsson A-C. The mode of action of corn starch and a pro-oxidant system in LDPE: influence of thermo-oxidation and UV-irradiation on the molecular weight changes. Polym Degrad Stab. 1997;55(2):237–245.
  • Corti A, Muniyasamy S, Vitali M, et al. Oxidation and biodegradation of polyethylene films containing pro-oxidant additives: synergistic effects of sunlight exposure, thermal aging and fungal biodegradation. Polym Degrad Stab. 2010;95(6):1106–1114.
  • Kaczmarek H, Bajer K. Biodegradation of plasticized poly(vinyl chloride) containing cellulose. J Polym Sci B Polym Phys. 2007;45(8):903–919.
  • Roy PK, Surekha P, Raman R, et al. Investigating the role of metal oxidation state on the degradation behaviour of LDPE. Polym Degrad Stab. 2009;94(7):1033–1039.
  • Mulligan CN. Chapter 15 – rhamnolipid biosurfactants: solubility and environmental issues. In: Letcher TM, editor. Thermodynamics, solubility and environmental issues. Amsterdam: Elsevier; 2007. p. 279–298.
  • Ganesh Kumar A, Anjana K, Hinduja M, et al. Review on plastic wastes in marine environment – biodegradation and biotechnological solutions. Mar Pollut Bull. 2019;150:110733.
  • Mor R, Sivan A. Biofilm formation and partial biodegradation of polystyrene by the actinomycete Rhodococcus ruber: biodegradation of polystyrene. Biodegradation. 2008;19(6):851–858.
  • Devi RS, Kannan VR, Nivas D, et al. Biodegradation of HDPE by Aspergillus spp. from marine ecosystem of Gulf of Mannar, India. Mar Pollut Bull. 2015;96(1–2):32–40.
  • Tribedi P, Sil AK. Low-density polyethylene degradation by Pseudomonas sp. AKS2 biofilm. Environ Sci Pollut Res. 2013;20(6):4146–4153.
  • Mukherjee S, RoyChaudhuri U, Kundu PP. Anionic surfactant induced oxidation of low density polyethylene followed by its microbial bio-degradation. Int Biodeterior Biodegrad. 2017;117:255–268.
  • Brückner R, Titgemeyer F. Carbon catabolite repression in bacteria: choice of the carbon source and autoregulatory limitation of sugar utilization. FEMS Microbiol Lett. 2002;209(2):141–148.
  • Galinier A. Carbon catabolite repression or how bacteria choose their favorite sugars. Med Sci. 2018;34(6–7):531–539.
  • Sanin SL, Sanin FD, Bryers JD. Effect of starvation on the adhesive properties of xenobiotic degrading bacteria. Process Biochem. 2003;38(6):909–914.
  • Sekhar VC, Nampoothiri KM, Mohan AJ, et al. Microbial degradation of high impact polystyrene (HIPS), an e-plastic with decabromodiphenyl oxide and antimony trioxide. J Hazard Mater. 2016;318:347–354.
  • Volke-Sepúlveda T, Saucedo-Castañeda G, Gutiérrez-Rojas M, et al. Thermally treated low density polyethylene biodegradation by Penicillium pinophilum and Aspergillus Niger. J Appl Polym Sci. 2002;83(2):305–314.
  • Fesseha H, Abebe F. Degradation of plastic materials using microorganisms: a review. Public Health Open J. 2019;4(2):57–63.
  • Sulaiman S, Yamato S, Kanaya E, et al. Isolation of a novel cutinase homolog with polyethylene terephthalate-degrading activity from leaf-branch compost by using a metagenomic approach. Appl Environ Microbiol. 2012;78(5):1556–1562.
  • Kawai F, Oda M, Tamashiro T, et al. A novel Ca2+-activated, thermostabilized polyesterase capable of hydrolyzing polyethylene terephthalate from Saccharomonospora viridis AHK190. Appl Microbiol Biotechnol. 2014;98(24):10053–10064.
  • Wei R, Oeser T, Schmidt J, et al. Engineered bacterial polyester hydrolases efficiently degrade polyethylene terephthalate due to relieved product inhibition. Biotechnol Bioeng. 2016;113(8):1658–1665.
  • Zhu B, Wang D, Wei N. Enzyme discovery and engineering for sustainable plastic recycling. Trends Biotechnol. 2021;40(1):22–37.
  • Montazer Z, Najafi MBH, Levin D. Challenges with verifying microbial degradation of polyethylene. Polymers. 2020;12(1):123.
  • Skariyachan S, Patil AA, Shankar A, et al. Enhanced polymer degradation of polyethylene and polypropylene by novel thermophilic consortia of Brevibacillus sps. and Aneurinibacillus sp. screened from waste management landfills and sewage treatment plants. Polym Degrad Stab. 2018;149:52–68.
  • Khatoon N, Jamal A, Ali MI. Lignin peroxidase isoenzyme: a novel approach to biodegrade the toxic synthetic polymer waste. Environ Technol. 2019;40:1366–1375.
  • Santo M, Weitsman R, Sivan A. The role of the copper-binding enzyme – laccase – in the biodegradation of polyethylene by the actinomycete Rhodococcus ruber. Int Biodeterior Biodegrad. 2013;84:204–210.
  • Fujisawa M, Hirai H, Nishida T. Degradation of polyethylene and nylon-66 by the laccase-mediator system. J Polym Environ. 2001;9(3):103–108.
  • Zhang H, Kong D, Wang L, et al. Degradation of UV-pretreated polyolefins by latex clearing protein from Streptomyces sp. strain K30. Sci Total Environ. 2022;806:150779.
  • Syranidou E, Karkanorachaki K, Amorotti F, et al. Development of tailored indigenous marine consortia for the degradation of naturally weathered polyethylene films. PLOS One. 2017;12(8):e0183984.
  • Alisch M, Feuerhack A, Müller H, et al. Biocatalytic modification of polyethylene terephthalate fibres by esterases from actinomycete isolates. Biocatal Biotransform. 2004;22(5–6):347–351.
  • Bäckström E, Odelius K, Hakkarainen M. Trash to treasure: microwave-assisted conversion of polyethylene to functional chemicals. Ind Eng Chem Res. 2017;56(50):14814–14821.
  • Tournier V, Topham CM, Gilles A, et al. An engineered PET depolymerase to break down and recycle plastic bottles. Nature. 2020;580(7802):216–219.
  • Kumar K, Gambhir G, Dass A, et al. Genetically modified crops: current status and future prospects. Planta. 2020;251(4):91.
  • Murray JV, Jansen CC, Barro PD. Risk associated with the release of Wolbachia-infected Aedes aegypti mosquitoes into the environment in an effort to control dengue. Front Public Health. 2016;4:43.
  • Botterell ZLR, Beaumont N, Dorrington T, et al. Bioavailability and effects of microplastics on marine zooplankton: a review. Environ Pollut. 2019;245:98–110.
  • Agrawal R, Semwal S, Kumar R, et al. Synergistic enzyme cocktail to enhance hydrolysis of steam exploded wheat straw at pilot scale. Front Energy Res. 2018;6:122.
  • DelRe C, Jiang Y, Kang P, et al. Near-complete depolymerization of polyesters with nano-dispersed enzymes. Nature. 2021;592(7855):558–563.
  • Plastics Today. Plastics-eating enzymes gain renewed interest as solution to waste problem; 2021; [cited 2021 Aug 12]. Available from: https://www.plasticstoday.com/materials-research/plastics-eating-enzymes-gain-renewed-interest-solution-waste-problem