434
Views
6
CrossRef citations to date
0
Altmetric
Review Articles

Microbial assisted multifaceted amelioration processes of heavy-metal remediation: a clean perspective toward sustainable and greener future

, , &
Pages 429-447 | Received 13 Oct 2021, Accepted 03 Jan 2023, Published online: 27 Feb 2023

References

  • Alam P, Ahmade K. Impact of solid waste on health and the environment. Int J Sustain Dev Green Econ. 2013;2:165–168.
  • Ihedioha JN, Ukoha PO, Ekere NR. Ecological and human health risk assessment of heavy metal contamination in soil of a municipal solid waste dump in Uyo, Nigeria. Environ Geochem Health. 2017;39(3):497–515.
  • Lal RM, Nagpure AS, Luo L, et al. Municipal solid-waste and dung cake burning: discoloring the Taj Mahal and human health impacts in Agra. Environ Res Lett. 2016;11(10):104009.
  • Soni A, Patil D, Argade K. Municipal solid-waste management. Proc Environ Sci. 2016;35:119–126.
  • Rahimi S, Hafezalkotob A, Monavari SM, et al. Sustainable landfill site selection for municipal solid-waste based on a hybrid decision-making approach: fuzzy group BWM-MULTIMOORA-GIS. J Clean Prod. 2020;248:119186.
  • Alloway BJ. Heavy-metals and metalloids as micronutrients for plants and animals. In: Alloway BJ, editors. Heavy-metals in soils – trace metals and metalloids in soils and their bioavailability. Heidelberg, New York, London: Springer Dordrecht; 2012. p. 195–209.
  • Parvin F, Rikta SY, Tareq SM. Application of nanomaterials for the removal of heavy metal from wastewater. In: Ahsan A, Ismail AF, editors. Nanotechnology in water and wastewater treatment – theory and applications. Cambridge, USA: Elsevier; 2019. p. 137–157.
  • RoyChowdhury A, Datta R, Sarkar D. Heavy-metals pollution and remediation. In: Török B, Dransfield T, editors. Green chemistry – an inclusive approach. Cambridge, USA: Elsevier; 2018. p. 359–373.
  • Máthé I, Benedek T, Táncsics A, et al. Diversity, activity, antibiotic and heavy-metals resistance of bacteria from petroleum hydrocarbon contaminated soils located in Harghita county (Romania). Int Biodeterior Biodegradation. 2012;73:41–49.
  • Rayu S, Karpouzas DG, Singh BK. Emerging technologies in bioremediation: constraints and opportunities. Biodegradation. 2012;23(6):917–926.
  • Shah V, Daverey A. Phytoremediation: a multidisciplinary approach to clean up heavy-metals contaminated soil. Environ Technol Innov. 2020;18:100774.
  • Yin K, Wang Q, Lv M, et al. Microorganism remediation strategies towards heavy-metals. Chem Eng J. 2019;360:1553–1563.
  • Kumar NM, Muthukumaran C, Sharmila G, et al. Genetically modified organisms and its impact on the enhancement of bioremediation. In: Varjani SJ, Agarwal AK, Gnansounou E, Gurunathan B, editors. Bioremediation: applications for environmental protection and management. Singapore: Springer; 2018. p. 53–76.
  • Nanda S, Berruti F. Municipal solid-waste management and landfilling technologies: a review. Environ Chem Lett. 2020;19:1433–1456.
  • Tiseo I. Global population and MSW generation shares by key country 2018. Published in Statista; 2020. Available from: https://www.statista.com/statistics/1026652/population-share-msw-generation-by-select-country/
  • Wang X, Chang VW-C, Li Z, et al. Co-pyrolysis of sewage sludge and organic fractions of municipal solid waste: synergistic effects on biochar properties and the environmental risk of heavy metals. J Hazard Mat. 2021;412:125200.
  • Nemathaga F, Maringa S, Chimuka L. Hospital solid waste management practices in Limpopo province, South Africa: a case study of two hospitals. Waste Manag. 2008;28(7):1236–1245.
  • Farzadkia M, Sedeh MS, Ghasemi A, et al. Estimation of the heavy metals released from cigarette butts to beaches and urban environments. J Hazard Mat. 2022;425:127969.
  • JeyaSundar PGSA, Ali A, Zhang Z. Waste treatment approaches for environmental sustainability. In: Chowdhary P, Raj A, Verma D, Akhter Y, editors. Microorganisms for sustainable environment and health. Cambridge, USA: Elsevier; 2020. p. 119–135.
  • Barakat MA. New trends in removing heavy-metals from industrial wastewater. Arab J Chem. 2011;4(4):361–377.
  • Efaq AN, Al-Gheethi AA. Management of clinical solid wastes generated from healthcare facilities in Yemen. In: 3rd International Conference on Sustainable Solid Waste Management; 2015. p. 2–4.
  • Farina M, Rocha JB, Aschner M. Mechanisms of methylmercury-induced neurotoxicity: evidence from experimental studies. Life Sci. 2011;89(15–16):555–563.
  • Miller D, Semmens K. Waste management in aquaculture. West Virginia University Extension Service Publication No. AQ02-1; 2002. p. 8.
  • Obi FO, Ugwuishiwu BO, Nwakaire JN. Agricultural waste concept, generation, utilization and management. Nig J Tech. 2016;35(4):957–964.
  • Ramírez-Rodríguez AE, Bañuelos-Hernández B, García-Soto MJ, et al. Arsenic removal using Chlamydomonas reinhardtii modified with the gene acr3 and enhancement of its performance by decreasing phosphate in the growing media. Int J Phytoremediation. 2019;21(7):617–623.
  • Kirpichtchikova TA, Manceau A, Spadini L, et al. Speciation and solubility of heavy-metals in contaminated soil using X-ray microfluorescence, EXAFS spectroscopy, chemical extraction, and thermodynamic modeling. Geochim Cosmochim Acta. 2006;70(9):2163–2190.
  • Srivastava V, Sarkar A, Singh S, et al. Agroecological responses of heavy-metals pollution with special emphasis on soil health and plant performances. Front Environ Sci. 2017;5:1–19.
  • Kachenko AG, Singh B. Heavy metals contamination in vegetables grown in urban and metal smelter contaminated sites in Australia. Water Air Soil Pollut. 2006;169(1–4):101–123.
  • Kulkarni BN, Anantharama V. Repercussions of COVID-19 pandemic on municipal solid waste management: challenges and opportunities. Sci Total Environ. 2020;743:140693.
  • Klemeš JJ, van Fan Y, Tan RR, et al. Minimising the present and future plastic waste, energy and environmental footprints related to COVID-19. Renew Sustain Energy Rev. 2020;127:109883.
  • Iriventi P. Clinical solid-waste management practices and its impact on human health and environment; 2016.
  • Lee BK, Ellenbecker MJ, Moure-Ersaso R. Alternatives for treatment and disposal cost reduction of regulated medical wastes. J Waste Manag. 2004;24(2):143–151.
  • Hossain MS, Santhanam A, Nik Norulaini NA, et al. Clinical solid-waste management practices and its impact on human health and environment – a review. J Waste Manag. 2011;31(4):754–766.
  • Adama M, Esena R, Fosu-Mensah B, et al. Heavy metal contamination of soils around a hospital waste incinerator bottom ash dumps site. J Environ Pub Health. 2016;29(2016):1–6.
  • Lakherwal D. Adsorption of heavy-metals: a review. Int J Environ Res Develop. 2014;4(1):41–48.
  • Tahir MB, Arif S, Sagir M, et al. Semiconductor-based photocatalytic nanomaterials for environmental applications. In: Encyclopedia of renewable and sustainable materials. Cambridge, USA: Elsevier; 2020. p. 320–325.
  • Ali H, Khan E, Ilahi I. Environmental chemistry and ecotoxicology of hazardous heavy-metals: environmental persistence, toxicity, and bioaccumulation. J Chem. 2019;2019:1–14.
  • Nriagu JO. A global assessment of natural sources of atmospheric trace metals. Nature. 1989;338(6210):47–49.
  • He ZL, Yang XE, Stoffella PJ. Trace elements in agroecosystems and impacts on the environment. J Trace Elem Med Biol. 2005;19(2–3):125–140.
  • Dzyadevych S, Jaffrezic-Renault N. Conductometric biosensors. In: Schaudies RP, editor. Biological identification: DNA amplification and sequencing, optical sensing, lab-on-chip and portable systems. UK: Woodhead Publishing Limited; 2014. p. 153–188.
  • Chadar SN, Keerti C. Solid waste pollution: a hazard to environment. Recent Adv Petrochem Sci. 2017;2:41–43.
  • Alengebawy A, Abdelkhalek ST, Qureshi SR, et al. Heavy-metals and pesticides toxicity in agricultural soil and plants: ecological risks and human health implications. Toxics. 2021;9(3):42.
  • Chibuike GU, Obiora SC. Heavy-metals polluted soils: effect on plants and bioremediation methods. Appl Environ Soil Sci. 2014;2014:1–12.
  • Yan A, Wang Y, Tan SN, et al. Phytoremediation: a promising approach for revegetation of heavy-metals-polluted land. Front Plant Sci. 2020;11:359.
  • Wuana RA, Okieimen FE. Heavy-metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. Int Sch Res Notices. 2011;2011:1–20.
  • Espinoza R. Chemical waste that impact on aquatic life or water quality. IDR Environmental Services; 2014. Available from: https://blog.idrenvironmental.com/chemical-waste-that-impact-on-aquatic-life-or-water-quality
  • Joint World Health Organization. Health risks of heavy-metals from long-range transboundary air pollution (no. EUR/06/5067592). Copenhagen: WHO Regional Office for Europe; 2007.
  • Vinti G, Bauza V, Clasen T, et al. Municipal solid-waste management and adverse health outcomes: a systematic review. IJERPH. 2021;18(8):4331.
  • Balali-Mood M, Naseri K, Tahergorabi Z, et al. Toxic mechanisms of five heavy-metals: mercury, lead, chromium, cadmium, and arsenic. Front Pharmacol. 2021;12:1–19.
  • Polcaro AM, Bradl H, editors. Heavy-metals in the environment: origin, interaction and remediation. Amsterdam: Elsevier; 2005. p. 2579.
  • Alvarez A, Saez JM, Davila Costa JS, et al. Actinobacteria: current research and perspectives for bioremediation of pesticides and heavy-metals. Chemosphere. 2017;166:41–62.
  • Awasthi AK, Li J, Pandey AK, et al. An overview of the potential of bioremediation for contaminated soil from municipal solid-waste site. In: Emerging and eco-friendly approaches for waste management. Singapore: Springer; 2019. p. 59–68.
  • Kapahi M, Sachdeva S. Bioremediation options for heavy-metals pollution. J Health Pollut. 2019;9(24):191203.
  • Nanda M, Kumar V, Sharma DK. Multimetal tolerance mechanisms in bacteria: the resistance strategies acquired by bacteria that can be exploited to ‘clean-up’ heavy-metals contaminants from water. Aquat Toxicol. 2019;212:1–10.
  • Lima e Silva AAD, Carvalho MA, de Souza SA, et al. Heavy-metals tolerance (Cr, Ag and Hg) in bacteria isolated from sewage. Braz J Microbiol. 2012;43(4):1620–1631.
  • Mustapha MU, Halimoon N. Screening and isolation of heavy-metals tolerant bacteria in industrial effluent. Proc Environ Sci. 2015;30:33–37.
  • Rani A, Goel R. Strategies for crop improvement in contaminated soils using metal-tolerant bioinoculants. In: Khan MS, Zaidi A, Musarrat J, editors. Microbial strategies for crop improvement. Berlin; Heidelberg: Springer; 2009. p. 85–104.
  • Wiszniewska A, Hanus-Fajerska E, Muszyńska E, et al. Natural organic amendments for improved phytoremediation of polluted soils: a review of recent progress. Pedosphere. 2016;26(1):1–12.
  • Bizily SP, Rugh CL, Summers AO, et al. Phytoremediation of methylmercury pollution: merB expression in Arabidopsis thaliana confers resistance to organomercurials. Proc Natl Acad Sci USA. 1999;96(12):6808–6813.
  • Wang Y, Luo Y, Zeng G, et al. Characteristics and in situ remediation effects of heavy-metals immobilizing bacteria on cadmium and nickel co-contaminated soil. Ecotoxicol Environ Saf. 2020;192:110294.
  • Gavrilescu M. Removal of heavy-metals from the environment by biosorption. Eng Life Sci. 2004;4(3):219–232.
  • Ock Joo J, Choi JH, Kim IH, et al. Effective bioremediation of cadmium (II), nickel (II), and chromium (VI) in a marine environment by using Desulfovibrio desulfuricans. Biotechnol Bioprocess Eng. 2015;20:937–941.
  • Velásquez L, Dussan J. Biosorption and bioaccumulation of heavy metals on dead and living biomass of Bacillus sphaericus. J Hazard Mater. 2009;167(1–3):713–716.
  • Zaidi A, Oves M, Ahmad E, et al. Importance of free-living fungi in heavy-metals remediation. In: Biomanagement of metal-contaminated soils. Dordrecht: Springer; 2011. p. 479–494.
  • Gupta R, Ahuja P, Khan S, et al. Microbial biosorbents: meeting challenges of heavy-metals pollution in aqueous solutions. Curr Sci. 2000;78:967–973.
  • Singh S, Kumar V. Mercury detoxification by absorption, mercuric ion reductase, and exopolysaccharides: a comprehensive study. Environ Sci Pollut Res Int. 2020;27(22):27181–27201.
  • Purchase D, Scholes LN, Revitt DM, et al. Effects of temperature on metal tolerance and the accumulation of Zn and Pb by metal‐tolerant fungi isolated from urban runoff treatment wetlands. J Appl Microbiol. 2009;106(4):1163–1174.
  • Tan T, Cheng P. Biosorption of metal ions with Penicillium chrysogenum. Appl Biochem Biotechnol. 2003;104(2):119–128.
  • Machado MD, Soares EV, Soares HM. Removal of heavy-metals using a brewer’s yeast strain of Saccharomyces cerevisiae: chemical speciation as a tool in the prediction and improving of treatment efficiency of real electroplating effluents. J Hazard Mater. 2010;180(1–3):347–353.
  • Rozman U, Kalčíková G, Marolt G, et al. Potential of waste fungal biomass for lead and cadmium removal: characterization, biosorption kinetic and isotherm studies. Environ Technol Innovation. 2020;18:100742.
  • Vijver MG, van Gestel CAM, Lanno RP, et al. Internal metal sequestration and its ecotoxicological relevance: a review. Environ Sci Technol. 2004;38(18):4705–4712.
  • Kogej A, Pavko A. Laboratory experiments of lead biosorption by self-immobilized rhizopus nigricans pellets in the batch stirred tank reactor and the packed bed column. Chem Biochem Eng Q. 2001;15:75–80.
  • Bwapwa JK, Jaiyeola AT, Chetty R. Bioremediation of acid mine drainage using algae strains: a review. S Afr J Chem. 2017;24:62–70.
  • Satpati GG. Solid-waste management by algae: current applications and future perspectives. Pollut Res. 2021;40:259–264.
  • Nawaz T, Rahman A, Pan S, et al. A review of landfill leachate treatment by microalgae: current status and future directions. Processes. 2020;8(4):384.
  • Mane PC, Bhosle AB, Jangam CM, et al. Bioadsorption of selenium by pretreated algal biomass. Adv Appl Sci Res. 2011;2:202–207.
  • Kalin M, Fyson A, Wheeler WN. The chemistry of conventional and alternative treatment systems for the neutralization of acid mine drainage. Sci Total Environ. 2006;366(2–3):395–408.
  • Ghosh M, Singh SP. A review on phytoremediation of heavy-metals and utilization of it’s by products. Asian J Environ Sci. 2005;6(18):214–231.
  • Abdel-Raouf N, Al-Homaidan AA, Ibraheem IBM. Microalgae and wastewater treatment. Saudi J Biol Sci. 2012;19(3):257–275.
  • Dwivedi S. Bioremediation of heavy-metals by algae: current and future perspective. J Adv Lab. 2012;3:195–199.
  • Dubey SK, Dubey J, Mehra S, et al. Potential use of cyanobacterial species in bioremediation of industrial effluents. Afr J Biotechnol. 2011;10:1125–1132.
  • Sharma GK, Khan SA. Bioremediation of sewage wastewater using selective algae for manure production. Int J Environ Eng Manag. 2013;4:573–580.
  • Bilal M, Shah JA, Ashfaq T, et al. Waste biomass adsorbents for copper removal from industrial wastewater—a review. J Hazard Mater. 2013;263:322–333.
  • Zainith S, Saxena G, Kishor R, et al. Application of microalgae in industrial effluent treatment, contaminants removal, and biodiesel production: opportunities, challenges, and future prospects. In: Bioremediation for environmental sustainability. USA: Elsevier; 2021. p. 481–517.
  • Fashola MO, Ngole-Jeme VM, Babalola OO. Heavy metal pollution from gold mines: environmental effects and bacterial strategies for resistance. IJERPH. 2016;13(11):1047.
  • François F, Lombard C, Guigner JM, et al. Isolation and characterization of environmental bacteria capable of extracellular biosorption of mercury. Appl Environ Microbiol. 2012;78(4):1097–1106.
  • Ziagova M, Dimitriadis G, Aslanidou D, et al. Comparative study of Cd (II) and Cr (VI) biosorption on Staphylococcus xylosus and Pseudomonas sp. in single and binary mixtures. Bioresour Technol. 2007;98(15):2859–2865.
  • Paul D. Research on heavy metal pollution of river ganga: a review. Ann Agrarian Sci. 2017;15(2):278–286.
  • Aryal M, Liakopoulou-Kyriakides M. Bioremoval of heavy metals by bacterial biomass. Environ Monit Assess. 2015;187(1):1–26.
  • Maznah WW, Al-Fawwaz AT, Surif M. Biosorption of copper and zinc by immobilised and free algal biomass, and the effects of metal biosorption on the growth and cellular structure of Chlorella sp. and Chlamydomonas sp. isolated from rivers in Penang, Malaysia. J Environ Sci. 2012;24(8):1386–1393.
  • Albert Q, Leleyter L, Lemoine M, et al. Comparison of tolerance and biosorption of three trace metals (Cd, Cu, Pb) by the soil fungus Absidia cylindrospora. Chemosphere. 2018;196:386–392.
  • Mishra D, Kim DJ, Ahn JG, et al. Bioleaching: a microbial process of metal recovery; a review. Met Mater Int. 2005;11(3):249–256.
  • Naseem M, Raghuwanshi R, Verma PC, et al. Mycoremediation-effective strategy to ameliorate arsenic toxicity. In: Sharma VK, Shah MP, Parmar S, Kumar A, editors. Fungi bio-prospects in sustainable agriculture, environment and nano-technology. UK: Academic Press; 2021. p. 433–458.
  • Rohwerder T, Gehrke T, Kinzler K, et al. Bioleaching review part A. Appl Microbiol Biotechnol. 2003;63(3):239–248.
  • Jerez CA. Bioleaching and biomining for the industrial recovery of metals. In: Comprehensive biotechnology. 2nd ed., Vol. 3. Cambridge, USA: Elsevier B.V.; 2011.
  • Pollmann K, Kutschke S, Matys S, et al. Bio-recycling of metals: recycling of technical products using biological applications. Biotechnol Adv. 2018;36(4):1048–1062.
  • de Wet MMM, Brink HG. Fungi in the bioremediation of toxic effluents. In: Fungi bio-prospects in sustainable agriculture, environment and nano-technology. UK: Academic Press; 2021. p. 407–431.
  • Jin Q, Kirk MF. pH as a primary control in environmental microbiology: 1. Thermodynamic perspective. Front Environ Sci. 2018;6:1–15.
  • Valix M. Bioleaching of electronic waste: milestones and challenges. In: Wong JWC, Tyagi RD, Pandey A, editors. Current developments in biotechnology and bioengineering. USA: Elsevier; 2017. p. 407–442.
  • Karwowska E, Andrzejewska-Morzuch D, Łebkowska M, et al. Bioleaching of metals from printed circuit boards supported with surfactant-producing bacteria. J Hazard Mater. 2014;264:203–210.
  • Narayanasamy M, Dhanasekaran D, Vinothini G, et al. Extraction and recovery of precious metals from electronic waste printed circuit boards by bioleaching acidophilic fungi. Int J Environ Sci Technol. 2018;15(1):119–132.
  • Rasoulnia P, Mousavi SM, Rastegar SO, et al. Fungal leaching of valuable metals from a power plant residual ash using Penicillium simplicissimum: evaluation of thermal pretreatment and different bioleaching methods. J Waste Manag. 2016;52:309–317.
  • Joshi PM, Juwarkar AA. In vivo studies to elucidate the role of extracellular polymeric substances from azotobacter in immobilization of heavy-metals. Environ Sci Technol. 2009;43(15):5884–5889.
  • Juwarkar AA, Nair A, Dubey KV, et al. Biosurfactant technology for remediation of cadmium and lead contaminated soils. Chemosphere. 2007;68(10):1996–2002.
  • Juwarkar AA, Yadav SK. Bioaccumulation and biotransformation of heavy metals. In: Fulekar MH, editor. Bioremediation technology. New York, USA: Springer; 2010. p. 266–284.
  • Nair A, Juwarkar AA, Devotta S. Study of speciation of metals in an industrial sludge and evaluation of metal chelators for their removal. J Hazard Mater. 2008;152(2):545–553.
  • Valls M, de Lorenzo V, Gonzàlez-Duarte R, et al. Engineering outer-membrane proteins in Pseudomonas putida for enhanced heavy-metal bioadsorption. J Inorg Biochem. 2000;79(1–4):219–223.
  • Tripathi RD, Srivastava S, Mishra S, et al. Arsenic hazards: strategies for tolerance and remediation by plants. Trends Biotechnol. 2007;25(4):158–165.
  • Brim H, McFarlan SC, Fredrickson JK, et al. Engineering Deinococcus radiodurans for metal remediation in radioactive mixed waste environments. Nat Biotechnol. 2000;18(1):85–90.
  • El-Hendawy HH, Ali DA, El-Shatoury EH, et al. Bioaccumulation of heavy-metals by Vibrio alginolyticus isolated from wastes of iron and steel factory, Helwan, Egypt. Egypt Acad J Biol Sci G Microbiol. 2009;1(1):23–28.
  • Wu M, Liang J, Tang J, et al. Decontamination of multiple heavy-metals-containing effluents through microbial biotechnology. J Hazard Mater. 2017;337:189–197.
  • Rana S, Mishra P, Ab Wahid Z, et al. Microbe-mediated sustainable bio-recovery of gold from low-grade precious solid-waste: a microbiological overview. J Environ Sci. 2020;89:47–64.
  • Kushwaha A, Rani R, Kumar S, et al. A new insight to adsorption and accumulation of high lead concentration by exopolymer and whole cells of lead-resistant bacterium Acinetobacter junii L. Pb1 isolated from coal mine dump. Environ Sci Pollut Res Int. 2017;24(11):10652–10661.
  • Chaturvedi AD, Pal D, Penta S, et al. Ecotoxic heavy-metals transformation by bacteria and fungi in aquatic ecosystem. World J Microbiol Biotechnol. 2015;31(10):1595–1603.
  • Lloyd PJ. The architecture of the WTO. Eur J Political Econ. 2001;17(2):327–353.
  • Wagner-Doblez I, Lunsdorf H, Lubbehusen T, et al. Structure and species composition of mercury-reducing biofilms. Appl Environ Microbiol. 2000;66:4559–4563.
  • Edwards SJ, Kjellerup BV. Applications of biofilms in bioremediation and biotransformation of persistent organic pollutants, pharmaceuticals/personal care products, and heavy-metals. Appl Microbiol Biotechnol. 2013;97(23):9909–9921.
  • Gupta S, Nirwan J. Evaluation of mercury biotransformation by heavy-metals-tolerant alcaligenes strain isolated from industrial sludge. Int J Environ Sci Technol. 2015;12(3):995–1002.
  • Kaewdoung B, Sutjaritvorakul T, Gadd GM, et al. Heavy-metals tolerance and biotransformation of toxic metal compounds by new isolates of wood-rotting fungi from Thailand. Geomicrobiol J. 2016;33(3–4):283–288.
  • Li S, Zhao B, Jin M, et al. A comprehensive survey on the horizontal and vertical distribution of heavy-metals and microorganisms in soils of a Pb/Zn smelter. J Hazard Mater. 2020;400:123255.
  • Qin J, Lehr CR, Yuan C, et al. Biotransformation of arsenic by a yellowstone thermoacidophilic eukaryotic alga. Proc Natl Acad Sci USA. 2009;106(13):5213–5217.
  • Mohd S, Kushwaha AS, Shukla J, et al. Fungal mediated biotransformation reduces toxicity of arsenic to soil dwelling microorganism and plant. Ecotoxicol Environ Saf. 2019;176:108–118.
  • Alkorta I, Epelde L, Garbisu C. Environmental parameters altered by climate change affect the activity of soil microorganisms involved in bioremediation. FEMS Microbiol Lett. 2017;364:fnx200.
  • Sharma I. Bioremediation techniques for polluted environment: concept, advantages, limitations, and prospects. In: Trace metals in the environment-new approaches and recent advances. London, UK: IntechOpen; 2020.
  • Chen C, Zhang X, Chen J, et al. Assessment of site contaminated soil remediation based on an input output life cycle assessment. J Clean Prod. 2020;263:121422.
  • Niti C, Sunita S, Kamlesh K, et al. Bioremediation: an emerging technology for remediation of pesticides. Res J Chem Environ. 2013;17:4.
  • Federal Remediation Technology Roundtable (FRTR) remediation technologies screening matrix and reference guide. Version 4.0; 2006. http://www.frtr.gov/
  • Lennon JT, Jones SE. Microbial seed banks: the ecological and evolutionary implications of dormancy. Nat Rev Microbiol. 2011;9(2):119–130.
  • Zhalnina K, Dias R, de Quadros PD, et al. Soil pH determines microbial diversity and composition in the park grass experiment. Microb Ecol. 2015;69(2):395–406.
  • Baker-Austin C, Dopson M. Life in acid: pH homeostasis in acidophiles. Trends Microbiol. 2007;15(4):165–171.
  • Lauber CL, Hamady M, Knight R, et al. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl Environ Microbiol. 2009;75(15):5111–5120.
  • Fernández-Calviño D, Bååth E. Growth response of the bacterial community to pH in soils differing in pH. FEMS Microbiol Ecol. 2010;73(1):149–156.
  • Adeleke R, Nwangburuka C, Oboirien B. Origins, roles and fate of organic acids in soils: a review. S Afr J Bot. 2017;108:393–406.
  • Morto-Bermea O, Hernández Alvarez E, Gaso I, et al. Heavy-metals concentrations in surface soils from Mexico City. Bull Environ Contam Toxicol. 2002;68(3):383–388.
  • Jin Y, Luan Y, Ning Y, et al. Effects and mechanisms of microbial remediation of heavy-metals in soil: a critical review. Appl Sci. 2018;8(8):1336.
  • The effects of pH on microbial growth. microbiology: Canadian edition. Open library Pressbooks. Available from: https://ecampusontario.pressbooks.pub/microbio/chapter/the-effects-of-ph-on-microbial-growth/
  • Huang J, Yuan F, Zeng G, et al. Influence of pH on heavy metal speciation and removal from wastewater using micellar-enhanced ultrafiltration. Chemosphere. 2017;173:199–206.
  • Abdel-Monem MO, Al-Zubeiry AHS, Al-Gheethi AAS. Biosorption of nickel by Pseudomonas cepacia 120S and Bacillus subtilis 117S. Water Sci Technol. 2010;61(12):2994–3007.
  • Li J, Zu Y-G, Fu Y-J, et al. Optimization of microwave-assisted extraction of triterpene saponins from defatted residue of yellow horn (Xanthoceras sorbifolia bunge.) kernel and evaluation of its antioxidant activity. Innov Food Sci Emerg Technol. 2010;11(4):637–643.
  • Priyadarshanee M, Das S. Biosorption and removal of toxic heavy metals by metal tolerating bacteria for bioremediation of metal contamination: a comprehensive review. J Environ Chem Eng. 2021;9(1):104686.
  • Acar FN, Malkoc E. The removal of chromium(VI) from aqueous solutions by Fagus orientalis L. Bioresour Technol. 2004;94(1):13–15.
  • Sanscartier D, Reimer K, Zeeb B, et al. The effect of temperature and aeration rate on bioremediation of diesel-contaminated soil in solid-phase bench-scale bioreactors. Soil Sediment Contam. 2011;20(4):353–369.
  • Pietikäinen J, Pettersson M, Bååth E. Comparison of temperature effects on soil respiration and bacterial and fungal growth rates. FEMS Microbiol Ecol. 2005;52(1):49–58.
  • Tao L, Yang H. Fluroxypyr biodegradation in soils by multiple factors. Environ Monit Assess. 2011;175(1–4):227–238.
  • Mohamed AT, El-Hussein AA, El-Siddig MA, et al. Degradation of oxyfluorfen herbicide by soil microorganisms biodegradation of herbicides. Biotechnology. 2011;10(3):274–279.
  • Al-Qodah Z. Biosorption of heavy metal ions from aqueous solutions by activated sludge. Desalination. 2006;196(1–3):164–176.
  • Aryal M, Liakopoulou-Kyriakides M. Binding mechanism and biosorption characteristics of Fe (III) by Pseudomonas sp. cells. J Water Sustain. 2013;3:117–131.
  • Farhan SN, Khadom AA. Biosorption of heavy metals from aqueous solutions by Saccharomyces cerevisiae. Int J Ind Chem. 2015;6(2):119–130.
  • Xie Y, Fan J, Zhu W, et al. Effect of heavy metals pollution on soil microbial diversity and bermudagrass genetic variation. Front Plant Sci. 2016;7:755.
  • Speight JG. Mechanisms of transformation. In: Reaction mechanisms in environmental engineering. Cambridge, USA: Elsevier; 2018.
  • Lenart-Boroń A, Wolny-Koładka K. Heavy metal concentration and the occurrence of selected microorganisms in soils of a steelworks area in Poland. Plant Soil Environ. 2015;61(6):273–278.
  • Dönmez GÇ, Aksu Z, Öztürk A, et al. A comparative study on heavy metal biosorption characteristics of some algae. Process Biochem. 1999;34(9):885–892.
  • Liu L, Bilal M, Duan X, et al. Mitigation of environmental pollution by genetically engineered bacteria–current challenges and future perspectives. Sci Total Environ. 2019;667:444–454.
  • Delangiz N, Varjovi MB, Lajayer BA, et al. Beneficial microorganisms in the remediation of heavy-metals. In: Molecular aspects of plant beneficial microbes in agriculture. Oxford, UK: Academic Press; 2020. p. 417–423.
  • Perpetuo EA, Souza CB, Nascimento CAO. Engineering bacteria for bioremediation. In: Progress in molecular and environmental bioengineering-from analysis and modeling to technology applications. Rijeka, Croatia: IntechOpen; 2011.
  • Li H, Cong Y, Lin J, et al. Enhanced tolerance and accumulation of heavy-metals ions by engineered Escherichia coli expressing Pyrus calleryana phytochelatin synthase. J Basic Microbiol. 2015;55(3):398–405.
  • Wu C, Li F, Yi S, et al. Genetically engineered microbial remediation of soils co-contaminated by heavy-metals and polycyclic aromatic hydrocarbons. J Environ Manage. 2021;296:113185.
  • Diep P, Mahadevan R, Yakunin AF. Heavy-metals removal by bioaccumulation using genetically engineered microorganisms. Front Bioeng Biotechnol. 2018;6:157.
  • Shen N, Birungi ZS, Chirwa E. Selective biosorption of precious metals by cell-surface engineered microalgae. Chem Eng Trans. 2017;61:25–30.
  • He Z, Siripornadulsil S, Sayre RT, et al. Removal of mercury from sediment by ultrasound combined with biomass (transgenic Chlamydomonas reinhardtii). Chemosphere. 2011;83(9):1249–1254.
  • Rojas LA, Yáñez C, González M, et al. Characterization of the metabolically modified heavy-metals-resistant Cupriavidus metallidurans strain MSR33 generated for mercury bioremediation. PLOS One. 2011;6(3):e17555.
  • Igiri BE, Okoduwa SI, Idoko GO, et al. Toxicity and bioremediation of heavy-metals contaminated ecosystem from tannery wastewater: a review. J Toxicol. 2018;2018(1016):1–16.
  • Frederick TM, Taylor EA, Willis JL, et al. Chromate reduction is expedited by bacteria engineered to produce the compatible solute trehalose. Biotechnol Lett. 2013;35(8):1291–1296.
  • Mateos LM, Villadangos AF, Alfonso G, et al. The arsenic detoxification system in corynebacteria: basis and application for bioremediation and redox control. Adv Appl Microbiol. 2017;99:103–137.
  • Ripp S, Nivens DE, Ahn Y, et al. Controlled field release of a bioluminescent genetically engineered microorganism for bioremediation process monitoring and control. Environ Sci Technol. 2000;34(5):846–853.
  • Abdi O, Kazemi M. A review study of biosorption of heavy metals and comparison between different biosorbents. J Mater Environ Sci. 2015;6:1386–1399.
  • Mishra S, Tripathi A. Adsorptive removal of Pb (II) via green route using magnetic iron nanoparticle sprinkled graphene oxide-chitosan beads in aqueous medium. Environ Nanotech Monitor Manage. 2022;17:100632.
  • Martins M, Mourato C, Sanches S, et al. Biogenic platinum and palladium nanoparticles as new catalysts for the removal of pharmaceutical compounds. Water Res. 2017;108:160–168.
  • Subramaniyam V, Subashchandrabose SR, Thavamani P, et al. Chlorococcum sp. MM11—a novel phyco-nanofactory for the synthesis of iron nanoparticles. J Appl Phycol. 2015;7:861–1869.
  • El-Kassas HY, Aly-Eldeen MA, Gharib SM. Green synthesis of iron oxide (Fe3O4) nanoparticles using two selected brown seaweeds: characterization and application for lead bioremediation. Acta Oceanol Sin. 2016;35(8):89–98.
  • Singh J, Dutta T, Kim KH, et al. Green’ synthesis of metals and their oxide nanoparticles: applications for environmental remediation. J Nanobiotechnol. 2018;6:1–24.
  • McKone TE, Nazaroff WW, Berck P, et al. Grand challenges for life-cycle assessment of biofuels. Environ Sci Technol. 2011;45(5):1751–1756.
  • Kumar B, Verma P. Life cycle assessment: blazing a trail for bioresources management. Energy Convers Manag. 2020;10:100063.
  • Goswami RK, Mehariya S, Karthikeyan OP, et al. Multifaceted application of microalgal biomass integrated with carbon dioxide reduction and wastewater remediation: a flexible concept for sustainable environment. J Clean Prod. 2022;339:130654.
  • Righi S. Life cycle assessments of waste-based biorefineries–A critical review. In: Basosi R, Cellura M, Longo S, Parisi ML, editors. Life cycle assessment of energy systems and sustainable energy technologies. Switzerland: Springer; 2019. p. 139–154.
  • Thornley P, Gilbert P, Shackley S, et al. Maximizing the greenhouse gas reductions from biomass: the role of life cycle assessment. Biomass Bioenerg. 2015;81:35–43.
  • Davis SC, Kauneckis D, Kruse NA, et al. Closing the loop: integrative systems management of waste in food, energy, and water systems. J Environ Stud Sci. 2016;6(1):11–24.
  • Cespi D, Passarini F, Vassura I, et al. Butadiene from biomass, a life cycle perspective to address sustainability in the chemical industry. Green Chem. 2016;18(6):1625–1638.
  • Cespi D, Beach ES, Swarr TE, et al. Life cycle inventory improvement in the pharmaceutical sector: assessment of the sustainability combining PMI and LCA tools. Green Chem. 2015;17(6):3390–3400.
  • Cespi D, Passarini F, Mastragostino G, et al. Glycerol as feedstock in the synthesis of chemicals: a life cycle analysis for acrolein production. Green Chem. 2015;17(1):343–355.
  • Girolkar S, Thawale P, Juwarkar A. Bacteria-assisted phytoremediation of heavy-metals and organic pollutants: challenges and future prospects. In: Bioremediation for environmental sustainability. Cambridge, USA: Elsevier; 2021. p. 247–267.
  • Passarini F, Nicoletti M, Ciacci L, et al. Environmental impact assessment of a WtE plant after structural upgrade measures. J Waste Manag. 2014;34(4):753–762.
  • Yao X, Cao Y, Zheng G, et al. Use of life cycle assessment and water quality analysis to evaluate the environmental impacts of the bioremediation of polluted water. Sci Total Environ. 2021;761:143260.
  • Beames A, Broekx S, Heijungs R, et al. Accounting for land-use efficiency and temporal variations between brownfield remediation alternatives in life-cycle assessment. J Clean Prod. 2015;101:109–117.
  • Abd Elhafez SE, Hamad HA, Zaatout AA, et al. Management of agricultural waste for removal of heavy-metals from aqueous solution: adsorption behaviors, adsorption mechanisms, environmental protection, and techno-economic analysis. Environ Sci Pollut Res Int. 2017;24(2):1397–1415.
  • Trindade PVO, Sobral LG, Rizzo ACL, et al. Bioremediation of a weathered and a recently oil-contaminated soils from Brazil: a comparison study. Chemosphere. 2005;58(4):515–522.
  • Barkay T, Miller SM, Summers AO. Bacterial mercury resistance from atoms to ecosystems. FEMS Microbiol Rev. 2003;27(2–3):355–384.
  • De J, Ramaiah N, Vardanyan L. Detoxification of toxic heavy-metals by marine bacteria highly resistant to mercury. Mar Biotechnol. 2008;10(4):471–477.
  • Liu P, Zhang Y, Tang Q, et al. Bioremediation of metal-contaminated soils by microbially-induced carbonate precipitation and its effects on ecotoxicity and long-term stability. Biochem Eng J. 2021;166:107856.
  • Singh S, Kumar V, Datta S, et al. Current advancement and future prospect of biosorbents for bioremediation. Sci Total Environ. 2020;709:135895.
  • Jagdale S, Hable A, Chabukswar A. Nanobiotechnology for bioremediation: recent trends. In: Biostimulation remediation technologies for groundwater contaminants. USA: IGI Global; 2018. p. 259–284.
  • Azubuike CC, Chikere CB, Okpokwasili GC. Bioremediation techniques–classification based on site of application: principles, advantages, limitations and prospects. World J Microbiol Biotechnol. 2016;32(11):1–18.
  • Tangahu BV, Sheikh Abdullah SR, Basri H, et al. A review on heavy-metals (as, Pb, and Hg) uptake by plants through phytoremediation. Int J Chem Eng. 2011;2011:1–31.
  • Sayler GS, Ripp S. Field applications of genetically engineered microorganisms for bioremediation processes. Curr Opin Biotechnol. 2000;11(3):286–289.
  • Rockne K, Reddy K. Bioremediation of contaminated sites. University of Illinois at Chicago; 2003.
  • Megharaj M, Venkateswarlu K, Naidu R. Bioremediation. In: Encyclopedia of toxicology. 3rd ed., Vol. 1. Amsterdam, The Netherlands: Elsevier; 2014. p. 485–489.
  • Nie J, Sun Y, Zhou Y, et al. Bioremediation of water containing pesticides by microalgae: mechanisms, methods, and prospects for future research. Sci Total Environ. 2020;7:136080.
  • Leong YK, Chang JS. Bioremediation of heavy-metals using microalgae: recent advances and mechanisms. Bioresour Technol. 2020;303:122886.
  • Kumar A, Chaturvedi AK, Yadav K, et al. Fungal phytoremediation of heavy-metals-contaminated resources: current scenario and future prospects. In: Recent advancement in white biotechnology through fungi. Cham: Springer; 2019. p. 437–461.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.