474
Views
2
CrossRef citations to date
0
Altmetric
Review Articles

Molecular modification and biotechnological applications of microbial aspartic proteases

ORCID Icon, , , , , ORCID Icon, , & ORCID Icon show all
Pages 388-413 | Received 22 Jun 2022, Accepted 07 Jan 2023, Published online: 26 Feb 2023

References

  • Bach E, Sant’Anna V, Daroit DJ, et al. Production, one-step purification, and characterization of a keratinolytic protease from Serratia marcescens P3. Process Biochem. 2012;47(12):2455–2462.
  • dos Santos Aguilar JG, Sato HH. Microbial proteases: production and application in obtaining protein hydrolysates. Food Res Int. 2018;103:253–262.
  • Theron LW, Divol B. Microbial aspartic proteases: current and potential applications in industry. Appl Microbiol Biotechnol. 2014;98(21):8853–8868.
  • Clark DP, Pazdernik NJ. Biotechnology. 2nd ed. USA: academic Cell-Press; 2016.
  • Di Cera E. Serine proteases. IUBMB life. 2009;61(5):510–515.
  • Liu H, Heng J, Wang L, et al. Identification, characterization, and expression analysis of clip-domain serine protease genes in the silkworm, Bombyx mori. Dev Comp Immunol. 2020;105:103584.
  • Jamir K, Ganguly R, Seshagirirao K. ZCPG, a cysteine protease from zingiber montanum rhizome exhibits enhanced anti-inflammatory and acetylcholinesterase inhibition potential. Int J Biol Macromol. 2020;163:2429–2438.
  • Rawlings ND, Barrett AJ. MEROPS: the peptidase database. Nucleic Acids Res. 1999;27(1):325–331.
  • Faro C, Gal S. Aspartic proteinase content of the arabidopsis genome. Curr Protein Pept Sci. 2005;6(6):493–500.
  • Barrett AJ, Woessner JF, Rawlings ND. Handbook of proteolytic enzymes. Vol. 1. California, USA: Elsevier; 2012.
  • Guo Y, Tu T, Yuan P, et al. High-level expression and characterization of a novel aspartic protease from talaromyces leycettanus JCM12802 and its potential application in juice clarification. Food Chem. 2019;281:197–203.
  • Purushothaman K, Bhat SK, Singh SA, et al. Aspartic protease from Aspergillus Niger: molecular characterization and interaction with pepstatin A. Int J Biol Macromol. 2019;139:199–212.
  • Sun Q, Chen F, Geng F, et al. A novel aspartic protease from rhizomucor miehei expressed in Pichia pastoris and its application on meat tenderization and preparation of turtle peptides. Food Chem. 2018;245:570–577.
  • Yang X, Cong H, Song J, et al. Heterologous expression of an aspartic protease gene from biocontrol fungus trichoderma asperellum in Pichia pastoris. World J Microbiol Biotechnol. 2013;29(11):2087–2094.
  • Yegin S, Fernandez-Lahore M. A thermolabile aspartic proteinase from mucor mucedo DSM 809: gene identification, cloning, and functional expression in Pichia pastoris. Mol Biotechnol. 2013;54(2):661–672.
  • Souza PM, Werneck G, Aliakbarian B, et al. Production, purification and characterization of an aspartic protease from Aspergillus foetidus. Food Chem Toxicol. 2017;109(Pt 2):1103–1110.
  • Yegin S, Goksungur Y, Fernandez-Lahore M. Purification, structural characterization, and technological properties of an aspartyl proteinase from submerged cultures of mucor mucedo DSM 809. Food Chem. 2012;133(4):1312–1319.
  • Wang X, Ma R, Xie X, et al. Thermostability improvement of a talaromyces leycettanus xylanase by rational protein engineering. Sci Rep. 2017;7(1):1–9.
  • You S, Tu T, Zhang L, et al. Improvement of the thermostability and catalytic efficiency of a highly active β-glucanase from talaromyces leycettanus JCM12802 by optimizing residual charge–charge interactions. Biotechnol Biofuels. 2016;9(1):1–12.
  • Zhang D, Tu T, Wang Y, et al. Improving the catalytic performance of a talaromyces leycettanus α-amylase by changing the linker length. J Agric Food Chem. 2017;65(24):5041–5048.
  • Guo Y, Tu T, Zheng J, et al. Improvement of BsAPA aspartic protease thermostability via autocatalysis-resistant mutation. J Agric Food Chem. 2019;67(37):10505–10512.
  • Guo Y, Tu T, Zheng J, et al. A novel thermostable aspartic protease from talaromyces leycettanus and its specific autocatalytic activation through an intermediate transition state. Appl Microbiol Biotechnol. 2020;104(11):4915–4926.
  • Beckman M, Holsinger RD, Small DH. Heparin activates β-secretase (BACE1) of alzheimer’s disease and increases autocatalysis of the enzyme. Biochemistry. 2006;45(21):6703–6714.
  • Lim L, Senba H, Kimura Y, et al. Influences of N-linked glycosylation on the biochemical properties of aspartic protease from Aspergillus glaucus MA0196. Process Biochem. 2019;79:74–80.
  • Xia Y, Ma Z, Qiu M, et al. N-glycosylation shields phytophthora sojae apoplastic effector PsXEG1 from a specific host aspartic protease. Proc Natl Acad Sci U S A. 2020;117(44):27685–27693.
  • Kangwa M, Salgado JAG, Fernandez-Lahore HM. Identification and characterization of N-glycosylation site on a Mucor circinelloides aspartic protease expressed in Pichia pastoris: effect on secretion, activity and thermo-stability. AMB Expr. 2018;8(1):1–13.
  • Tong L, Zheng J, Wang X, et al. Improvement of thermostability and catalytic efficiency of glucoamylase from talaromyces leycettanus JCM12802 via site-directed mutagenesis to enhance industrial saccharification applications. Biotechnol Biofuels. 2021;14(1):202–209.
  • Oka T, Murakami K, Wakita T, et al. Comparative site‐directed mutagenesis in the catalytic amino acid triad in calicivirus proteases. Microbiol Immunol. 2011;55(2):108–114.
  • Gao X, Liu E, Yin Y, et al. Enhancing activities of salt-tolerant proteases secreted by Aspergillus oryzae using atmospheric and room-temperature plasma mutagenesis. J Agric Food Chem. 2020;68(9):2757–2764.
  • Pearson MS, Jariwala AR, Abbenante G, et al. New tools for NTD vaccines: a case study of quality control assays for product development of the human hookworm vaccine Na-APR-1M74. Hum Vaccin Immunother. 2015;11(5):1251–1257.
  • Khodai-Kalaki M, Aubert DF, Valvano MA. Characterization of the AtsR hybrid sensor kinase phosphorelay pathway and identification of its response regulator in Burkholderia cenocepacia. J Biol Chem. 2013;288(42):30473–30484.
  • MacPherson DJ, Mills CL, Ondrechen MJ, et al. Tri-arginine exosite patch of caspase-6 recruits substrates for hydrolysis. J Biol Chem. 2019;294(1):71–88.
  • Murthy PS, Palakshappa SH, Padela J, et al. Amelioration of cocoa organoleptics using A. oryzae cysteine proteases. LWT-Food Sci Technol. 2020;120:108919.
  • Guerra Y, Valiente PA, Berry C, et al. Predicting functional residues of the solanum lycopersicum aspartic protease inhibitor (SLAPI) by combining sequence and structural analysis with molecular docking. J Mol Model. 2012;18(6):2673–2687.
  • Ruback E, Lobo LA, França TCC, et al. Structural analysis of pla protein from the biological warfare agent Yersinia pestis: docking and molecular dynamics of interactions with the mammalian plasminogen system. J Biomol Struct Dyn. 2013;31(5):477–484.
  • Manahan SE. Green chemistry and the ten commandments of sustainability. Carbon. 2006;100(12):011.
  • Mandujano-González V, Villa-Tanaca L, Anducho-Reyes MA, et al. Secreted fungal aspartic proteases: a review. Rev Iberoam Micol. 2016;33(2):76–82.
  • Sumantha A, Larroche C, Pandey A. Microbiology and industrial biotechnology of food-grade proteases: a perspective. Food Technol Biotechnol. 2006;44(2):211–220.
  • Sampaio e Silva TA, Knob A, Tremacoldi CR, et al. Purification and some properties of an extracellular acid protease from Aspergillus clavatus. World J Microbiol Biotechnol. 2011;27(11):2491–2497.
  • Li M, Gustchina A, Cruz R, et al. Structure of RC1339/APRc from Rickettsia conorii, a retropepsin-like aspartic protease. Acta Crystallogr D Biol Crystallogr. 2015;71(Pt 10):2109–2118.
  • Cruz R, Huesgen P, Riley SP, et al. RC1339/APRc from Rickettsia conorii is a novel aspartic protease with properties of retropepsin-like enzymes. PLoS Pathog. 2014;10(8):e1004324.
  • Chen MT, Lu YY, Weng TM. Comparison of milk-clotting activity of proteinase produced by Bacillus subtilis var, natto and rhizopus oligosporus with commercial rennet. Asian Australas. J. Anim. Sci. 2010;23(10):1369–1379.
  • An Z, He X, Gao W, et al. Characteristics of miniature cheddar‐type cheese made by microbial rennet from Bacillus amyloliquefaciens: a comparison with commercial calf rennet. J Food Sci. 2014;79(2):M214–M221.
  • Kumar A, Rao M. Biochemical characterization of a low molecular weight aspartic protease inhibitor from thermo-tolerant Bacillus licheniformis: kinetic interactions with pepsin. Biochim Biophys Acta. 2006;1760(12):1845–1856.
  • Meng X, Zhang J, Wu H, et al. Akkermansia muciniphila aspartic protease amuc_1434* inhibits human colorectal cancer LS174T cell viability via TRAIL-mediated apoptosis pathway. IJMS. 2020;21(9):3385.
  • Jacob M, Jaros D, Rohm H. Recent advances in milk clotting enzymes. Int J Dairy Technol. 2011;64(1):14–33.
  • Heredia-Sandoval NG, Valencia-Tapia MY, Calderón de la Barca AM, et al. Microbial proteases in baked goods: modification of gluten and effects on immunogenicity and product quality. Foods. 2016;5(4):59–69.
  • Nair IC, Jayachandran K. Aspartic proteases in food industry. In: Parameswaran B, Varjani S, Raveendran S, editors. Green bio-processes. Singapore: Springer; 2019. p. 15–30.
  • Kumar S, Sharma NS, Saharan MR, et al. Extracellular acid protease from rhizopus oryzae: purification and characterization. Process Biochem. 2005;40(5):1701–1705.
  • Deng JJ, Huang WQ, Li ZW, et al. Biocontrol activity of recombinant aspartic protease from trichoderma harzianum against pathogenic fungi. Enzyme Microb Technol. 2018;112:35–42.
  • Savino S, Bulgari D, Monti E, et al. Agro-industrial wastes: a substrate for multi-enzymes production by cryphonectria parasitica. Fermentation. 2021;7(4):279.
  • da Silva RR, de Oliveira LCG, Juliano MA, et al. Biochemical and milk-clotting properties and mapping of catalytic subsites of an extracellular aspartic peptidase from basidiomycete fungus Phanerochaete chrysosporium. Food Chem. 2017;225:45–54.
  • Van Sluyter SC, Warnock NI, Schmidt S, et al. Aspartic acid protease from Botrytis cinerea removes haze-forming proteins during white winemaking. J Agric Food Chem. 2013;61(40):9705–9711.
  • Kryštůfek R, Šácha P, Starková J, et al. Re-emerging aspartic protease targets: examining Cryptococcus neoformans major aspartyl peptidase 1 as a target for antifungal drug discovery. J Med Chem. 2021;64(10):6706–6719.
  • Bernard D, Mehul B, Thomas-Collignon A, et al. Identification and characterization of a novel retroviral-like aspartic protease specifically expressed in human epidermis. J Invest Dermatol. 2005;125(2):278–287.
  • Pettit SC, Everitt LE, Choudhury S, et al. Initial cleavage of the human immunodeficiency virus type 1 GagPol precursor by its activated protease occurs by an intramolecular mechanism. J Virol. 2004;78(16):8477–8485.
  • Li C, Li X, Lu W. Total chemical synthesis of human T‐cell leukemia virus type 1 protease via native chemical ligation. Pept Sci. 2010;94(4):487–494.
  • Hill J, Phylip LH. Bacterial aspartic proteinases. FEBS Lett. 1997;409(3):357–360.
  • Hajji M, Hmidet N, Jellouli K, et al. Gene cloning and expression of a detergent stable alkaline protease from Aspergillus clavatus ES1. Process Biochem. 2010;45(10):1746–1752.
  • Viniegra-González G, Favela-Torres E, Aguilar CN, et al. Advantages of fungal enzyme production in solid state over liquid fermentation systems. Biochem Eng J. 2003;13(2-3):157–167.
  • Yegin S, Fernandez-Lahore M, Jose Gama Salgado A, et al. Aspartic proteinases from mucor spp. in cheese manufacturing. Appl Microbiol Biotechnol. 2011;89(4):949–960.
  • Mendieta JR, Pagano MR, Munoz FF, et al. Antimicrobial activity of potato aspartic proteases (StAPs) involves membrane permeabilization. Microbiology (Reading). 2006;152(Pt 7):2039–2047.
  • Claverie-MartÌn F, Vega-Hernàndez MC. Aspartic proteases used in cheese making. In: Polaina J, MacCabe AP, editors. Industrial enzymes. Dordrecht, Netherlands: Springer; 2007. p. 207–219.
  • Matsui T, Kinoshita-Ida Y, Hayashi-Kisumi F, et al. Mouse homologue of skin-specific retroviral-like aspartic protease involved in wrinkle formation. J Biol Chem. 2006;281(37):27512–27525.
  • Puente XS, Sánchez LM, Overall CM, et al. Human and mouse proteases: a comparative genomic approach. Nat Rev Genet. 2003;4(7):544–558.
  • Coates L, Erskine PT, Wood SP, et al. A neutron laue diffraction study of endothiapepsin: implications for the aspartic proteinase mechanism. Biochemistry. 2001;40(44):13149–13157.
  • Caldwell TA, Vickery ON, Colburn JD, et al. Conformational dynamics of the membrane enzyme LspA upon antibiotic and substrate binding. Biophys J. 2022;121(11):2078–2083.
  • Loymunkong C, Sittikul P, Songtawee N, et al. Yield improvement and enzymatic dissection of Plasmodium falciparum plasmepsin V. Mol Biochem Parasitol. 2019;231:111188.
  • Balasubramanian N, Toubarro D, Nascimento G, et al. Purification, molecular characterization and gene expression analysis of an aspartic protease (Sc-ASP113) from the nematode Steinernema carpocapsae during the parasitic stage. Mol Biochem Parasitol. 2012;182(1-2):37–44.
  • Gama Salgado JA, Kangwa M, Fernandez-Lahore M. Cloning and expression of an active aspartic proteinase from Mucor circinelloides in Pichia pastoris. BMC Microbiol. 2013;13(1):250.
  • Liu Y, Yang Q. Cloning and heterologous expression of aspartic protease SA76 related to biocontrol in trichoderma harzianum. FEMS Microbiol Lett. 2007;277(2):173–181.
  • Xiao H, Sinkovits AF, Bryksa BC, et al. Recombinant expression and partial characterization of an active soluble histo-aspartic protease from Plasmodium falciparum. Protein Expr Purif. 2006;49(1):88–94.
  • Takenaka S, Umeda M, Senba H, et al. Heterologous expression and characterisation of the Aspergillus aspartic protease involved in the hydrolysis and decolorisation of red‐pigmented proteins. J Sci Food Agric. 2017;97(1):95–101.
  • Tcherepanova I, Bhattacharyya L, Rubin CS, et al. Aspartic proteases from the nematode Caenorhabditis elegans: structural organization and developmental and cell-specific expression of asp-1. J Biol Chem. 2000;275(34):26359–26369.
  • Phue JN, Lee SJ, Trinh L, et al. Modified Escherichia coli B (BL21), a superior producer of plasmid DNA compared with Escherichia coli K (DH5α). Biotechnol Bioeng. 2008;101(4):831–836.
  • Zhang H, Wang Y, Brunecky R, et al. A swollenin from talaromyces leycettanus JCM12802 enhances cellulase hydrolysis toward various substrates. Front Microbiol. 2021;12:658096.
  • Wang S, Zhang P, Xue Y, et al. Characterization of a novel aspartic protease from rhizomucor miehei expressed in Aspergillus Niger and its application in production of ACE-Inhibitory peptides. Foods. 2021;10(12):2949.
  • Young CL, Britton ZT, Robinson AS. Recombinant protein expression and purification: a comprehensive review of affinity tags and microbial applications. Biotechnol J. 2012;7(5):620–634.
  • Sachdev D, Chirgwin JM. Properties of soluble fusions between mammalian aspartic proteinases and bacterial maltose-binding protein. J Protein Chem. 1999;18(1):127–136.
  • Vavrová Ľ, Muchová K, Barák I. Comparison of different Bacillus subtilis expression systems. Res Microbiol. 2010;161(9):791–797.
  • Souza C, Guimarães JM, Pereira S, et al. The multifunctionality of expression systems in Bacillus subtilis: emerging devices for the production of recombinant proteins. Exp Biol Med (Maywood). 2021;246(23):2443–2453.
  • Sak-Ubol S, Namvijitr P, Pechsrichuang P, et al. Secretory production of a beta-mannanase and a chitosanase using a Lactobacillus plantarum expression system. Microb Cell Fact. 2016;15(1):1–12.
  • Zobel S, Kumpfmüller J, Süssmuth RD, et al. Bacillus subtilis as heterologous host for the secretory production of the non-ribosomal cyclodepsipeptide enniatin. Appl Microbiol Biotechnol. 2015;99(2):681–691.
  • Dong H, Zhang D. Current development in genetic engineering strategies of bacillus species. Microbial Cell Fact. 2014;13(1):1–11.
  • Hirooka K, Tamano A. Bacillus subtilis highly efficient protein expression systems that are chromosomally integrated and controllable by glucose and rhamnose. Biosci Biotechnol Biochem. 2018;82(11):1942–1954.
  • Song Y, Nikoloff JM, Zhan D. Improving protein production on the level of regulation of both expression and secretion pathways in Bacillus subtilis. J Microbiol Biotechnol. 2015;25(7):963–977.
  • Imamura D, Kuwana R, Kroos L, et al. Substrate specificity of SpoIIGA, a signal-transducing aspartic protease in bacilli. J Biochem. 2011;149(6):665–671.
  • Morello E, Bermudez-Humaran L, Llull D, et al. Lactococcus lactis, an efficient cell factory for recombinant protein production and secretion. J Mol Microbiol Biotechnol. 2008;14(1-3):48–58.
  • Krzeslak J, Braun P, Cool RH, et al. Heterologous production of Escherichia coli penicillin G acylase in Pseudomonas aeruginosa. J Biotechnol. 2009;142(3-4):250–258.
  • Huang K-X, Badger M, Haney K, et al. Large scale production of Bacillus thuringiensis PS149B1 insecticidal proteins Cry34Ab1 and Cry35Ab1 from Pseudomonas fluorescens. Protein Expr Purif. 2007;53(2):325–330.
  • Itaya H, Kikuchi Y. Secretion of Streptomyces mobaraensis pro-transglutaminase by coryneform bacteria. Appl Microbiol Biotechnol. 2008;78(4):621–625.
  • Mukhtar H. Biosynthesis of protease from Lactobacillus paracasei: kinetic analysis of fermentation parameters. Ind J Biochem Biophys. 2006;43(6):377–381.
  • Chen R. Bacterial expression systems for recombinant protein production: e. coli and beyond. Biotechnol Adv. 2012;30(5):1102–1107.
  • Gomes AR, Byregowda SM, Veeregowda BM, Institute of Animal Health and Veterinary Biologicals, KVAFSU, Hebbal, Bengaluru-560024, Karnataka, India, et al. An overview of heterologous expression host systems for the production of recombinant proteins. Adv. Anim. Vet. Sci. 2016;4(7):346–356.
  • Yang S, Kuang Y, Li H, et al. Enhanced production of recombinant secretory proteins in Pichia pastoris by optimizing Kex2 P1’site. PLoS One. 2013;8(9):e75347.
  • Karbalaei M, Rezaee SA, Farsiani H. Pichia pastoris: a highly successful expression system for optimal synthesis of heterologous proteins. J Cell Physiol. 2020;235(9):5867–5881.
  • Guo Y, Li X, Jia W, et al. Characterization of an intracellular aspartic protease (PsAPA) from penicillium sp. XT7 and its application in collagen extraction. Food Chem. 2021;345:128834.
  • Nevalainen H, Peterson R, Curach N. Overview of gene expression using filamentous fungi. Curr Protoc Prot Sci. 2018;92(1):e55.
  • Schmoll M, Dattenböck C. Gene expression systems in fungi: advancements and applications. Cham, Switzerland: Springer; 2016. p. 309–334.
  • MacKenzie D, Jeenes D, Archer D. Filamentous fungi as expression systems for heterologous proteins. In: Genetics and biotechnology. Berlin, Heidelberg: Springer; 2004; p. 289–315.
  • Madhavan A, Pandey A, Sukumaran RK. Expression system for heterologous protein expression in the filamentous fungus Aspergillus unguis. Bioresour Technol. 2017;245(Pt B):1334–1342.
  • Sandini S, La Valle R, Deaglio S, et al. A highly immunogenic recombinant and truncated protein of the secreted aspartic proteases family (rSap2t) of Candida albicans as a mucosal anticandidal vaccine. FEMS Immunol Med Microbiol. 2011;62(2):215–224.
  • Long C, Cui J, Zeng B, et al. Screening and identification of anti-glucose repression proteins in cellulase production fungus trichoderma orientalis EU7-22. Int J Agric Biol. 2020;23(2):399–404.
  • Long C, Cheng Y, Gan L, et al. Identification of a genomic region containing a novel promoter resistant to glucose repression and over-expression of β-glucosidase gene in hypocrea orientalis EU7-22. Int J Mol Sci. 2013;14(4):8479–8490.
  • Dou K, Wang Z, Zhang R, et al. Cloning and characteristic analysis of a novel aspartic protease gene Asp55 from trichoderma asperellum ACCC30536. Microbiol Res. 2014;169(12):915–923.
  • Balasubramanian N, Nascimento G, Ferreira R, et al. Pepsin-like aspartic protease (Sc-ASP155) cloning, molecular characterization and gene expression analysis in developmental stages of nematode Steinernema carpocapsae. Gene. 2012;500(2):164–171.
  • Feijoo-Siota L, Rama JLR, Sánchez-Pérez A, et al. Expression, activation and processing of a novel plant milk-clotting aspartic protease in Pichia pastoris. J Biotechnol. 2018;268:28–39.
  • Guo Z-P, Qiu C-y, Zhang L, et al. Expression of aspartic protease from Neurospora crassa in industrial ethanol-producing yeast and its application in ethanol production. Enzyme Microb Technol. 2011;48(2):148–154.
  • Nie Z, Liu P, Wang Y, et al. Directed Evolution and rational design of mechanosensitive channel MscCG2 for improved glutamate excretion efficiency. J Agric Food Chem. 2021;69(51):15660–15669.
  • Aucamp JP, Cosme AM, Lye GJ, et al. High‐throughput measurement of protein stability in microtiter plates. Biotechnol Bioeng. 2005;89(5):599–607.
  • Yu H, Ma S, Li Y, et al. Hot spots-making directed evolution easier. Biotechnol Adv. 2022;56:107926.
  • O'Loughlin TL, Greene DN, Matsumura I. Diversification and specialization of HIV protease function during in vitro evolution. Mol Biol Evol. 2006;23(4):764–772.
  • Hu W, Liu X, Li Y, et al. Rational design for the stability improvement of armillariella tabescens β-mannanase MAN47 based on N-glycosylation modification. Enzyme Microb Technol. 2017;97:82–89.
  • Li H, Turunen O. Effect of acidic amino acids engineered into the active site cleft of Thermopolyspora flexuosa GH11 xylanase. Biotechnol Appl Biochem. 2015;62(4):433–440.
  • Yu X-W, Tan N-J, Xiao R, et al. Engineering a disulfide bond in the lid hinge region of rhizopus chinensis lipase: increased thermostability and altered acyl chain length specificity. PLoS One. 2012;7(10):e46388.
  • Li J-F, Zhao S-G, Tang C-D, et al. Cloning and functional expression of an acidophilic β-mannanase gene (Anman5A) from Aspergillus Niger LW-1 in Pichia pastoris. J Agric Food Chem. 2012;60(3):765–773.
  • Ding H, Gao F, Liu D, et al. Significant improvement of thermal stability of glucose 1-dehydrogenase by introducing disulfide bonds at the tetramer interface. Enzyme Microb Technol. 2013;53(6-7):365–372.
  • Cao H, Nie K, Li C, et al. Rational design of substrate binding pockets in polyphosphate kinase for use in cost-effective ATP-dependent Cascade reactions. Appl Microbiol Biotechnol. 2017;101(13):5325–5332.
  • Yang H, Liu L, Li J, et al. Rational design to improve protein thermostability: recent advances and prospects. ChemBioEng Rev. 2015;2(2):87–94.
  • Bhakat S, Söderhjelm P. Flap dynamics in pepsin-like aspartic proteases: a computational perspective using Plasmepsin-II and BACE-1 as model systems. J. Chem. Inf. Model. 2022;62(4):914–926.
  • Bjelic S, Åqvist J. Computational prediction of structure, substrate binding mode, mechanism, and rate for a malaria protease with a novel type of active site. Biochemistry. 2004;43(46):14521–14528.
  • Korendovych IV. Rational and semirational protein design. Prot Eng. 2018;1685:15–23.
  • Nascimento AS, Krauchenco S, Golubev AM, et al. Statistical coupling analysis of aspartic proteinases based on crystal structures of the Trichoderma reesei enzyme and its complex with pepstatin A. J Mol Biol. 2008;382(3):763–778.
  • Fujinaga M, Chernaia MM, Mosimann SC, et al. Crystal structure of human pepsin and its complex with pepstatin. Protein Sci. 1995;4(5):960–972.
  • Ma S, Henderson JA, Shen J. Exploring the pH-Dependent structure–dynamics–function relationship of human renin. J Chem Inf Model. 2021;61(1):400–407.
  • Doukas PG, Vageli DP, Sasaki CT, et al. Pepsin promotes activation of epidermal growth factor receptor and downstream oncogenic pathways, at slightly acidic and neutral pH, in exposed hypopharyngeal cells. IJMS. 2021;22(8):4275.
  • Bose I, Zhao Y. Selective hydrolysis of aryl esters under acidic and neutral conditions by a synthetic aspartic protease mimic. ACS Catal. 2021;11(7):3938–3942.
  • Suttiprapa S, Mulvenna J, Huong NT, et al. Ov-APR-1, an aspartic protease from the carcinogenic liver fluke, Opisthorchis viverrini: functional expression, immunolocalization and subsite specificity. Int J Biochem Cell Biol. 2009;41(5):1148–1156.
  • Xu J, Liu RD, Bai SJ, et al. Molecular characterization of a Trichinella spiralis aspartic protease and its facilitation role in larval invasion of host intestinal epithelial cells. PLoS Negl Trop Dis. 2020;14(4):e0008269.
  • Aoki W, Kitahara N, Miura N, et al. Candida albicans possesses Sap7 as a pepstatin A-insensitive secreted aspartic protease. PLoS One. 2012;7(2):e32513.
  • Gao B, He L, Wei D, et al. Identification and magnetic immobilization of a pyrophilous aspartic protease from antarctic psychrophilic fungus. J Food Biochem. 2018;42(6):e12691.
  • Zou S, Xie L, Liu Y, et al. N-linked glycosylation influences on the catalytic and biochemical properties of penicillium purpurogenum β-d-glucuronidase. J Biotechnol. 2012;157(3):399–404.
  • Wang Z, Guo C, Liu L, et al. Effects of N-glycosylation on the biochemical properties of recombinant bEKL expressed in Pichia pastoris. Enzyme Microb Technol. 2018;114:40–47.
  • Zhao Y, Miao Y, Zhi F, et al. Rational Design of pepsin for enhanced thermostability via exploiting the guide of structural weakness on stability. Front Phys. 2021;9:586.
  • Lai Y, Li W, Wu X, et al. A highly efficient protein degradation system in bacillus sp. CN2: a functional-degradomics study. Appl Microbiol Biotechnol. 2021;105(2):707–723.
  • Khan AR, Parrish JC, Fraser ME, et al. Lowering the entropic barrier for binding conformationally flexible inhibitors to enzymes. Biochemistry. 1998;37(48):16839–16845.
  • Shen CH, Wang YF, Kovalevsky AY, et al. Amprenavir complexes with HIV‐1 protease and its drug‐resistant mutants altering hydrophobic clusters. Febs J. 2010;277(18):3699–3714.
  • Theron LW, Bely M, Divol B. Monitoring the impact of an aspartic protease (MpAPr1) on grape proteins and wine properties. Appl Microbiol Biotechnol. 2018;102(12):5173–5183.
  • Siala R, Kamoun A, Hajji M, et al. Extracellular acid protease from Aspergillus Niger I1: purification and characterization. African J Biotechnol. 2009;8(18):4582–4589.
  • Zhang GQ, Zhang QP, Sun Y, et al. Purification of a novel pepsin inhibitor from coriolus versicolor and its biochemical properties. J Food Sci. 2012;77(3):C293–C297.
  • Vishwanatha K, Rao AA, Singh SA. Characterisation of acid protease expressed from Aspergillus oryzae MTCC 5341. Food Chem. 2009;114(2):402–407.
  • Aoki K, Matsubara S, Umeda M, et al. Aspartic protease from Aspergillus (eurotium) repens strain MK82 is involved in the hydrolysis and decolourisation of dried bonito (katsuobushi). J Sci Food Agric. 2013;93(6):1349–1355.
  • Juárez-Montiel M, Tesillo-Moreno P, Cruz-Angeles A, et al. Heterologous expression and characterization of the aspartic endoprotease Pep4um from Ustilago maydis, a homolog of the human chatepsin D, an important breast cancer therapeutic target. Mol Biol Rep. 2018;45(5):1155–1163.
  • Ajith S, Ghosh J, Shet D, et al. Partial purification and characterization of phytase from Aspergillus foetidus MTCC 11682. AMB Express. 2019;9(1):3–11.
  • Mamo J, Kangwa M, Suarez Orellana JF, et al. Purification and characterization of aspartic protease produced from Aspergillus oryzae DRDFS13 MN726447 under Solid-State fermentation. Catal Lett. 2022;152(7):2033–2046.
  • Chinmayee C, Martin A, Kumar BG, et al. A new thermostable rhizopuspepsin: purification and biochemical characterisation. Process Biochem. 2022;112:18–26.
  • Zeleznik TZ, Puizdar V, Dolenc I. Expression, purification and auto-activation of cathepsin E from insect cells. Protein Pept Lett. 2015;22(6):525–531.
  • Sun F, Sun Q, Zhang H, et al. Purification and biochemical characteristics of the microbial extracellular protease from Lactobacillus curvatus isolated from harbin dry sausages. Int J Biol Macromol. 2019;133:987–997.
  • Li L, Gong J, Wang S, et al. Heterologous expression and characterization of a new clade of aspergillus α-L-rhamnosidase suitable for citrus juice processing. J Agric Food Chem. 2019;67(10):2926–2935.
  • Yin C, Zheng L, Chen L, et al. Cloning, expression, and characterization of a milk-clotting aspartic protease gene (Po-Asp) from Pleurotus ostreatus. Appl Biochem Biotechnol. 2014;172(4):2119–2131.
  • Mahmood W, Viberg LT, Fischer K, et al. An aspartic protease of the scabies mite sarcoptes scabiei is involved in the digestion of host skin and blood macromolecules. PLoS Negl Trop Dis. 2013;7(11):e2525.
  • Kozik A, Gogol M, Bochenska O, et al. Kinin release from human kininogen by 10 aspartic proteases produced by pathogenic yeast Candida albicans. BMC Microbiol. 2015;15(1):1–14.
  • Wu H, Downs D, Ghosh K, et al. Candida albicans secreted aspartic proteases 4–6 induce apoptosis of epithelial cells by a novel trojan horse mechanism. Faseb J. 2013;27(6):2132–2144.
  • Wasyl K, Zawistowska-Deniziak A, Bąska P, et al. Molecular cloning and expression of the cDNA sequence encoding a novel aspartic protease from uncinaria stenocephala. Exp Parasitol. 2013;134(2):220–227.
  • Zhao G, Song X, Kong X, et al. Immunization with Toxoplasma gondii aspartic protease 3 increases survival time of infected mice. Acta Trop. 2017;171:17–23.
  • Meng X, Wang W, Lan T, et al. A purified aspartic protease from Akkermansia Muciniphila plays an important role in degrading Muc2. IJMS. 2019;21(1):72.
  • Zawrotniak M, Bochenska O, Karkowska-Kuleta J, et al. Aspartic proteases and major cell wall components in Candida albicans trigger the release of neutrophil extracellular traps. Front Cell Infect Microbiol. 2017;7:414.
  • Hiraishi T. Poly (aspartic acid)(PAA) hydrolases and PAA biodegradation: current knowledge and impact on applications. Appl Microbiol Biotechnol. 2016;100(4):1623–1630.
  • Yang F, Totsingan F, Dolan E, et al. Protease-catalyzed l-aspartate oligomerization: substrate selectivity and computational modeling. ACS Omega. 2020;5(9):4403–4414.
  • Tsuchiya K, Numata K. Facile terminal functionalization of peptides by protease-catalyzed chemoenzymatic polymerization toward synthesis of polymeric architectures consisting of peptides. Polym. Chem. 2020;11(2):560–567.
  • Ageitos JM, Yazawa K, Tateishi A, et al. The benzyl ester group of amino acid monomers enhances substrate affinity and broadens the substrate specificity of the enzyme catalyst in chemoenzymatic copolymerization. Biomacromol. 2016;17(1):314–323.
  • Gimenez-Dejoz J, Tsuchiya K, Numata K. Insights into the stereospecificity in papain-mediated chemoenzymatic polymerization from quantum mechanics/molecular mechanics simulations. ACS Chem Biol. 2019;14(6):1280–1292.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.