2,686
Views
6
CrossRef citations to date
0
Altmetric
Review Articles

It comes from the sea: macroalgae-derived bioactive compounds with anti-cancer potential

ORCID Icon, ORCID Icon & ORCID Icon
Pages 462-476 | Received 27 Jul 2022, Accepted 14 Jan 2023, Published online: 26 Feb 2023

References

  • Nova P, Pimenta-Martins A, Silva JL, et al. Health benefits and bioavailability of marine resources components that contribute to health – what’s new? Crit Rev Food Sci Nutr. 2020;60:1–13.
  • Fernando IPS, Lee W, Ahn G. Marine algal flavonoids and phlorotannins; an intriguing frontier of biofunctional secondary metabolites. Crit Rev Biotechnol. 2021;1:23.
  • Cunha SA, de Castro R, Coscueta ER, et al. Hydrolysate from mussel Mytilus galloprovincialis meat: enzymatic hydrolysis, optimization and bioactive properties. Molecules. 2021;26:5228.
  • Wang HMD, Li XC, Lee DJ, et al. Potential biomedical applications of marine algae. Bioresour Technol. 2017;244(Pt 2):1407–1415.
  • Manivasagan P, Bharathiraja S, Santha Moorthy M, et al. Marine natural pigments as potential sources for therapeutic applications. Crit Rev Biotechnol. 2018;38(5):745–761.
  • Nova P, Martins AP, Teixeira C, et al. Foods with microalgae and seaweeds fostering consumers health: a review on scientific and market innovations. J Appl Phycol. 2020;32:1789–1802.
  • Freitas AC, Pereira L, Rodrigues D, et al. Marine functional foods. In: Kim S-K, editor. Springer handbook of marine biotechnology [Internet]. Berlin, Heidelberg: Springer; 2015. p. 969–994.
  • Suleria HAR, Gobe G, Masci P, et al. Marine bioactive compounds and health promoting perspectives; innovation pathways for drug discovery. Trends Food Sci Technol. 2016;50:44–55.
  • Khalifa SAM, Elias N, Farag MA, et al. Marine natural products: a source of novel anticancer drugs. Mar Drugs. 2019;17:491.
  • Cunha SA, Pintado ME. Bioactive peptides derived from marine sources: biological and functional properties. Trends Food Sci Technol. 2021;119:348–370.
  • Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–249.
  • Robatel S, Schenk M. Current limitations and novel perspectives in pancreatic cancer treatment. Cancers. 2022;14:985.
  • American Cancer Society. Cancer treatment and survivorship facts and figures 2019–2021. Atlanta: American Cancer Society [Internet]; 2019. p. 1–48.
  • Wu J, Cai J. Dilemma and challenge of immunotherapy for pancreatic cancer. Dig Dis Sci. 2020;66(2):359–368.
  • Bausart M, Préat V, Malfanti A. Immunotherapy for glioblastoma: the promise of combination strategies. J Exp Clin Cancer Res. 2022;41(1):35.
  • Biris-Dorhoi ES, Michiu D, Pop CR, et al. Macroalgae—a sustainable source of chemical compounds with biological activities. Nutrients. 2020;12:1–23.
  • Pereira L. Macroalgae. In: Amato A, editor. Encyclopedia; 2021. p. 177–188.
  • Pérez-Lloréns JL, Mouritsen OG, Rhatigan P, et al. Seaweeds in mythology, folklore, poetry, and life. J Appl Phycol. 2020;32:3157–3182.
  • Lin Y, Qi X, Liu H, et al. The anti-cancer effects of fucoidan: a review of both in vivo and in vitro investigations. Cancer Cell Int. 2020;20:1–14.
  • Cotas J, Pacheco D, Gonçalves AMM, et al. Seaweeds’ nutraceutical and biomedical potential in cancer therapy: a concise review. J Cancer Metastasis Treat. 2021;7:13.
  • Geisen U, Zenthoefer M, Peipp M, et al. Molecular mechanisms by which a Fucus vesiculosus extract mediates cell cycle inhibition and cell death in pancreatic cancer cells. Mar Drugs. 2015;13:4470–4491.
  • Delma CR, Somasundaram ST, Srinivasan GP, et al. Fucoidan from Turbinaria conoides: a multifaceted “deliverable” to combat pancreatic cancer progression. Int J Biol Macromol. 2015;74:447–457.
  • Delma CR, Thirugnanasambandan S, Srinivasan GP, et al. Fucoidan from marine brown algae attenuates pancreatic cancer progression by regulating p53 – NFκB crosstalk. Phytochemistry. 2019;167:112078.
  • Xu JW, Yan Y, Wang L, et al. Marine bioactive compound dieckol induces apoptosis and inhibits the growth of human pancreatic cancer cells PANC-1. J Biochem Mol Toxicol. 2021;35:1–10.
  • Wang CH, Li XF, Jin LF, et al. Dieckol inhibits non-small-cell lung cancer cell proliferation and migration by regulating the PI3K/AKT signaling pathway. J Biochem Mol Toxicol. 2019;33:1–8.
  • Mao Z, Shen X, Dong P, et al. Fucosterol exerts antiproliferative effects on human lung cancer cells by inducing apoptosis, cell cycle arrest and targeting of Raf/MEK/ERK signalling pathway. Phytomedicine. 2019;61:152809.
  • Wu TC, Hong YH, Tsai YH, et al. Degradation of Sargassum crassifolium fucoidan by ascorbic acid and hydrogen peroxide, and compositional, structural, and in vitro anti-lung cancer analyses of the degradation products. Mar Drugs. 2020;18:334.
  • Hsiao HH, Wu TC, Tsai YH, et al. Effect of oversulfation on the composition, structure, and in vitro anti-lung cancer activity of fucoidans extracted from Sargassum aquifolium. Mar Drugs. 2021;19:215.
  • Hsu HY, Lin TY, Lu MK, et al. Fucoidan induces Toll-like receptor 4-regulated reactive oxygen species and promotes endoplasmic reticulum stress-mediated apoptosis in lung cancer. Sci Rep. 2017;7:44990.
  • Wang K, Wang B, Wang Z, et al. Alginic acid inhibits non-small cell lung cancer-induced angiogenesis via activating miR-506 expression. J Nat Med. 2021;75(3):553–564.
  • Yamada T, Kogure H, Kataoka M, et al. Halosmysin A, a novel 14-membered macrodiolide isolated from the marine-algae-derived fungus Halosphaeriaceae sp. Mar Drugs. 2020;18:320.
  • Priyan I, Fernando S, Kapuge K, et al. Fucoidan purified from Sargassum polycystum induces apoptosis through mitochondria-mediated pathway in HL-60 and MCF-7 cells. Mar Drugs. 2020;18:1–13.
  • Wang J, Ma Y, Yang J, et al. Fucoxanthin inhibits tumour-related lymphangiogenesis and growth of breast cancer. J Cell Mol Med. 2019;23(3):2219–2229.
  • Tocaciu S, Oliver LJ, Lowenthal RM, et al. The effect of Undaria pinnatifida fucoidan on the pharmacokinetics of letrozole and tamoxifen in patients with breast cancer. Integr Cancer Ther. 2018;17(1):99–105.
  • Smyrniotopoulos V, Merten C, Firsova D, et al. Oxygenated acyclic diterpenes with anticancer activity from the Irish brown seaweed Bifurcaria bifurcata. Mar Drugs. 2020;18:581.
  • Güner A, Nalbantsoy A, Sukatar A, et al. Apoptosis-inducing activities of Halopteris scoparia L. Sauvageau (Brown algae) on cancer cells and its biosafety and antioxidant properties. Cytotechnology. 2019;71(3):687–704.
  • Eo HJ, Kwon TH, Park GH, et al. In vitro anticancer activity of phlorofucofuroeckol a via upregulation of activating transcription factor 3 against human colorectal cancer cells. Mar Drugs. 2016;14:69.
  • Malyarenko OS, Imbs TI, Ermakova SP. In vitro anticancer and radiosensitizing activities of phlorethols from the brown alga Costaria costata. Molecules. 2020;25:3208.
  • Park HY, Park SH, Jeong JW, et al. Induction of p53-independent apoptosis and G1 cell cycle arrest by fucoidan in HCT116 human colorectal carcinoma cells. Mar Drugs. 2017;15:1–14.
  • Fan S, Zhang J, Nie W, et al. Antitumor effects of polysaccharide from Sargassum fusiforme against human hepatocellular carcinoma HepG2 cells. Food Chem Toxicol. 2017;102:53–62.
  • Sadeeshkumar V, Duraikannu A, Ravichandran S, et al. Protective effects of dieckol on N-nitrosodiethylamine induced hepatocarcinogenesis in rats. Biomed Pharmacother. 2016;84:1810–1819.
  • Pan TJ, Li LX, Zhang JW, et al. Antimetastatic effect of Fucoidan-Sargassum against liver cancer cell invadopodia formation via targeting integrin αvβ3 and mediating αvβ3/Src/E2F1 signaling. J Cancer. 2019;10(20):4777–4792.
  • Zhang D, Ramachandran G, Mothana RA, et al. Biosynthesized silver nanoparticles using Caulerpa taxifolia against A549 lung cancer cell line through cytotoxicity effect/morphological damage. Saudi J Biol Sci. 2020;27(12):3421–3427.
  • Haq SH, Al-Ruwaished G, Mutlaq AL, et al. Antioxidant, anticancer activity and phytochemical analysis of green algae, Chaetomorpha collected from the Arabian Gulf. Sci Rep. 2019;9:1–7.
  • Al-Malki AL. In vitro cytotoxicity and pro-apoptotic activity of phycocyanin nanoparticles from Ulva lactuca (Chlorophyta) algae. Saudi J Biol Sci. 2020;27(3):894–898.
  • Hussein UK, Mahmoud HM, Farrag AG, et al. Chemoprevention of diethylnitrosamine-initiated and phenobarbital-promoted hepatocarcinogenesis in rats by sulfated polysaccharides and aqueous extract of Ulva lactuca. Integr Cancer Ther. 2015;14(6):525–545.
  • Chang VS, Okechukwu PN, Sen TS. The properties of red seaweed (Kappaphycus alvarezii) and its effect on mammary carcinogenesis. Biomed Pharmacother. 2017;87:296–301.
  • Nikolova B, Semkova S, Tsoneva I, et al. Characterization and potential antitumor effect of a heteropolysaccharide produced by the red alga Porphyridium sordidum. Eng Life Sci. 2019;19(12):978–985.
  • Fazeela Mahaboob Begum SM, Chitra K, Joseph B, et al. Gelidiella acerosa inhibits lung cancer proliferation. BMC Complement Altern Med. 2018;18:1–14.
  • Kang Y, Wang Z, Xie D, et al. Characterization and potential antitumor activity of polysaccharide from Gracilariopsis lemaneiformis. 2017;15(4):100.
  • Chen H, Wang L. Chapter 8 – posttreatment strategies for biomass conversion. In: Chen H, Wang L, editors. Technologies for biochemical conversion of biomass [Internet]. Oxford: Academic Press; 2017. p. 197–217.
  • Tchabo W, Ma Y, Kwaw E, et al. Impact of extraction parameters and their optimization on the nutraceuticals and antioxidant properties of aqueous extract mulberry leaf. Int J Food Prop. 2018;21:717–732.
  • Dobrinčić A, Balbino S, Zorić Z, et al. Advanced technologies for the extraction of marine brown algal polysaccharides. Mar Drugs. 2020;18:168.
  • Mahato N, Sinha M, Sharma K, et al. Modern extraction and purification techniques for obtaining high purity food-grade bioactive compounds and value-added co-products from citrus wastes. Foods. 2019;8(11):523.
  • Schönbächler M. Ion exchange chromatography BT – encyclopedia of geochemistry: a comprehensive reference source on the chemistry of the earth. In: White WM, editor. Encyclopedia of geochemistry [Internet]. Cham: Springer International Publishing; 2018. p. 731–736.
  • Catarino MD, Silva AMS, Cardoso SM. Phycochemical constituents and biological activities of Fucus spp. Mar Drugs. 2018;16:249.
  • Atashrazm F, Lowenthal RM, Woods GM, et al. Fucoidan and cancer: a multifunctional molecule with anti-tumor potential. Mar Drugs. 2015;13(4):2327–2346.
  • Reyes ME, Riquelme I, Salvo T, et al. Brown seaweed fucoidan in cancer: implications in metastasis and drug resistance. Mar Drugs. 2020;18:232.
  • Albensi BC. What is nuclear factor kappa B (NF-κB) doing in and to the mitochondrion? Front Cell Dev Biol. 2019;7:1–7.
  • Silke J, O’Reilly LA. NF-κB and pancreatic cancer; chapter and verse. Cancers. 2021;13:1–35.
  • Iksen PS, Pongrakhananon V. Targeting the PI3K/AKT/mTOR signaling pathway in lung cancer: an update regarding potential drugs and natural products. Molecules. 2021;26:4100.
  • Juliusson G, Hough R. Leukemia. Prog Tumor Res. 2016;43:87–100.
  • Bhola PD, Letai A. Mitochondria—judges and executioners of cell death sentences. Mol Cell. 2016;61(5):695–704.
  • Ku HC, Cheng CF. Master Regulator activating transcription factor 3 (ATF3) in metabolic homeostasis and cancer. Front Endocrinol. 2020;11:556.
  • Gong L, Zhang Y, Liu C, et al. Application of radiosensitizers in cancer radiotherapy. Int J Nanomedicine. 2021;16:1083–1102.
  • Hientz K, Mohr A, Bhakta-Guha D, et al. The role of p53 in cancer drug resistance and targeted chemotherapy. Oncotarget. 2017;8(5):8921–8946.
  • Saha SK, Bin LS, Won J, et al. Correlation between oxidative stress, nutrition, and cancer initiation. Int J Mol Sci. 2017;18:1544.
  • Moreira A, Cruz S, Marques R, et al. The underexplored potential of green macroalgae in aquaculture. Rev Aquac. 2022;14:5–26.
  • Garcia-Pichel F, Belnap J. 7 – cyanobacteria and algae. In: Gentry TJ, Fuhrmann JJ, Zuberer DA, editors. Principles and applications of soil microbiology [Internet]. 3rd ed. Austria: Elsevier; 2021. p. 171–189.
  • Usov AI. Polysaccharides of the red algae. In: Gudkov AV, Blagosklonny MV, editors. Advances in carbohydrate chemistry and biochemistry [Internet]. 1st ed. Orchard Park, NY: Elsevier Inc.; 2011.
  • Khotimchenko M, Tiasto V, Kalitnik A, et al. Antitumor potential of carrageenans from marine red algae. Carbohydr Polym. 2020;246:116568.
  • Ismail MM, Alotaibi BS, El-Sheekh MM. Therapeutic uses of red macroalgae. Molecules. 2020;25:1–14.