288
Views
32
CrossRef citations to date
0
Altmetric
Original

Period2 Expression Pattern and its Role in the Development of the Pineal Circadian Clock in Zebrafish

&
Pages 101-112 | Published online: 07 Jul 2009

References

  • Albrecht U., Zheng B., Larkin D., Sun Z. S., Lee C. C. mPer1 and mPer2 are essential for normal resetting of the circadian clock. J. Biol. Rhythms 2001; 16: 100–104
  • Carr A. J., Whitmore D. Imaging of single light‐responsive clock cells reveals fluctuating free‐running periods. Nat. Cell Biol. 2005; 7: 319–321
  • Carr A. J.F., Tamai T. K., Young L. C., Ferrer V., Dekens M. P., Whitemore D. Light reaches the very heart of the zebrafish clock. Chronobiol. Int. 2006; 23, in press
  • Cermakian N., Pando M. P., Thompson C. L., Pinchak A. B., Selby C. P., Gutierrez L., Welles D. E., Cahill G. M., Sancar A., Sassone‐Corsi P. Light induction of a vertebrate clock gene involves signaling through blue‐light receptor and MAP‐Kinases. Curr. Biol. 2002; 12: 844–848
  • Chappell P. E. Clocks and the black box: circadian influences on gonadotropin‐releasing hormone secretion. J. Neuroendocrinol. 2005; 17: 119–130
  • Dekens M. P., Santoriello C., Vallone D., Grassi G., Whitmore D., Foulkes N. S. Light regulates the cell cycle in zebrafish. Curr. Biol. 2003; 13: 2051–2057
  • Delaunay F., Thisse C., Thisse B., Laudet V. Differential regulation of Period 2 and Period 3 expression during development of the zebrafish circadian clock. Gene Expr. Patterns 2003; 3: 319–324
  • Devlin P. F., Kay S. A. Circadian photoperception. Annu. Rev. Physiol. 2001; 63: 677–694
  • Doi M., Nakajima Y., Okano T., Fukada Y. Light‐induced phase‐delay of the chicken pineal circadian clock is associated with the induction of cE4bp4, a potential transcriptional repressor of cPer2 gene. Proc. Natl. Acad. Sci. U S A. 2001; 98: 8089–8094
  • Falcon J. Cellular circadian clocks in the pineal. Prog. Neurobiol 1999; 58: 121–162
  • Falcon J., Gothilf Y., Coon S. L., Boeuf G., Klein D. C. Genetic, temporal and developmental differences between melatonin rhythm generating systems in the teleost fish pineal organ and retina. J. Neuroendocrinol. 2003; 15: 378–382
  • Gamse J. T., Shen Y. C., Thisse C., Thisse B., Raymond P. A., Halpern M. E., Liang J. O. Otx5 regulates genes that show circadian expression in the zebrafish pineal complex. Nat. Genet. 2002; 30: 117–121
  • Glass A. S., Dahm R. The zebrafish as a model organism for eye development. Ophthalmic Res. 2004; 36: 4–24
  • Gothilf Y., Coon S. L., Toyama R., Namboodiri M. A.A., Klein D. C. Zebrafish serotonin N‐acetyltransferase: Marker for pineal photoreceptor development and circadian‐clock function. Endocrinology 1999; 140: 4895–4903
  • Herzog W., Zeng X., Lele Z., Sonntag C., Ting J. W., Chang C. Y., Hammerschmidt M. Adenohypophysis formation in the zebrafish and its dependence on sonic hedgehog. Dev. Biol. 2003; 254: 36–49
  • Hirayama J., Cardone L., Doi M., Sassone‐Corsi P. Common pathways in circadian and cell cycle clocks: light‐dependent activation of Fos/AP‐1 in zebrafish controls CRY‐1a and WEE‐1. Proc. Natl. Acad. Sci. USA. 2005; 102: 10194–10199
  • Hurd M. W., Cahill G. M. Entraining signals initiate behavioral circadian rhythmicity in larval zebrafish. J. Biol. Rhythms 2002; 17: 307–314
  • Kaneko M., Cahill G. M. Light‐dependent development of circadian gene expression in transgenic zebrafish. PLoS Biol. 2005; 3: e34
  • Kazimi N., Cahill G. M. Development of a circadian melatonin rhythm in embryonic zebrafish. Brain Res. Dev. Brain Res. 1999; 117: 47–52
  • Kimmel C. B., Ballard W. W., Kimmel S. R., Ullmann B., Schilling T. F. Stages of embryonic development of the zebrafish. Dev. Dyn. 1995; 203: 253–310
  • Kobayashi Y., Ishikawa T., Hirayama J., Daiyasu H., Kanai S., Toh H., Fukuda I., Tsujimura T., Terada N., Kamei Y., Yuba S., Iwai S., Todo T. Molecular analysis of zebrafish photolyase/cryptochrome family: two types of cryptochromes present in zebrafish. Genes Cells 2000; 5: 725–738
  • Leclerc G. M., Boockfor F. R. Pulses of prolactin promoter activity depend on a noncanonical E‐box that can bind the circadian proteins CLOCK and BMAL1. Endocrinology 2005; 146: 2782–2790
  • Lincoln G. A. Melatonin entrainment of circannual rhythms. Chronobiol. Int. 2006; 23, in press
  • Lincoln G. A., Andersson H., Loudon A. Clock genes in calendar cells as the basis of annual timekeeping in mammals—a unifying hypothesis. J. Endocrinol. 2003; 179: 1–13
  • Masai I., Heisenberg C. P., Barth K. A., Macdonald R., Adamek S., Wilson S. W. Floating head and masterblind regulate neuronal patterning in the roof of the forebrain. Neuron 1997; 18: 43–57
  • Moutsaki P., Whitmore D., Bellingham J., Sakamoto K., David‐Gray Z. K., Foster R. G. Teleost multiple tissue (tmt) opsin: a candidate photopigment regulating the peripheral clocks of zebrafish? Brain Res. Mol. Brain Res. 2003; 10: 135–145
  • Okabayashi N., Yasuo S., Watanabe M., Namikawa T., Ebihara S., Yoshimura T. Ontogeny of circadian clock gene expression in the pineal and the suprachiasmatic nucleus of chick embryo. Brain. Res. 2003; 990: 231–234
  • Okano T., Fukada Y. Photoreception and circadian clock system of the chicken pineal gland. Microsc. Res. Tech. 2001; 53: 72–80
  • Pando M. P., Pinchak A. B., Cermakian N., Sassone‐Corsi P. A cell‐based system that recapitulates the dynamic light‐dependent regulation of the vertebrate clock. Proc. Natl. Acad. Sci. USA 2001; 98: 10178–10183
  • Pierce L. X., Liang J. O. Blinded by light: exo‐rhodopsin is regulated by orthodentricle homeobox 5 and period 3 in the zebrafish pineal organ. Chronobiol. Int. 2006; 23, in press
  • Shearman L. P., Zylka M. J., Weaver D. R., Kolakowski L. F., Jr., Reppert S. M. Two period homologs: circadian expression and photic regulation in the suprachiasmatic nuclei. Neuron 1997; 19: 1261–1269
  • Shorte S. L., Leclerc G. M., Vazquez‐Martinez R., Leaumont D. C., Faught W. J., Frawley L. S., Boockfor F. R. PRL gene expression in individual living mammotropes displays distinct functional pulses that oscillate in a noncircadian temporal pattern. Endocrinology 2002; 143: 1126–1133
  • Steenhard B. M., Besharse J. C. Phase shifting the retinal circadian clock: xPer2 mRNA induction by light and dopamine. J. Neurosci. 2000; 20: 8572–8577
  • Stehle J. H., von Gall C., Korf H. W. Melatonin: a clock‐output, a clock‐input. Neuroendocrinol. 2003; 15: 383–389
  • Tamai T. K., Vardhanabhuti V., Foulkes N. S., Whitmore D. Early embryonic light detection improves survival. Curr. Biol. 2004; 14: R104–105
  • Tsujikawa M., Malicki J. G. Genetics of photoreceptor development and function in zebrafish. Int. J. Dev. Biol. 2004; 48: 925–934
  • Whitlock K. E. A new model for olfactory placode development. Brain Behav. Evol. 2004; 64: 126–140
  • Whitmore D., Foulkes N. S., Sassone‐Corsi P. Light acts directly on organs and cells in culture to set the vertebrate circadian clock. Nature 2000; 404: 87–91
  • Wilson S. W., Easter S. S., Jr. Stereotyped pathway selection by growth cones of early epiphysial neurons in the embryonic zebrafish. Development 1991; 112: 723–746
  • Zhdanova I. V., Wang S. Y., Leclair O. U., Danilova N. P. Melatonin promotes sleep‐like state in zebrafish. Brain Res. 2001; 903: 263–268
  • Zhuang M., Wang Y., Steenhard B. M., Besharse J. C. Differential regulation of two period genes in the Xenopus eye. Brain Res. Mol. Brain Res. 2000; 82: 52–64
  • Ziv L., Levkovitz S., Toyama R., Falcon J., Gothilf Y. Functional development of the zebrafish pineal gland: light‐induced expression of period2 is required for onset of the circadian clock. J. Neuroendocrinol. 2005; 17: 314–320
  • Zylka M. J., Shearman L. P., Weaver D. R., Reppert S. M. Three period homologs in mammals: differential light responses in the suprachiasmatic circadian clock and oscillating transcripts outside of brain. Neuron 1998; 20: 1103–1110

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.