300
Views
51
CrossRef citations to date
0
Altmetric
Original

Age‐Related Effects on the Biological Clock and its Behavioral Output in a Primate

, , &
Pages 451-460 | Published online: 07 Jul 2009

References

  • Aujard F., Perret M. Age‐related effects on reproductive function and sexual competition in the male prosimian primate, Microcebus murinus. Physiol. Behav. 1998; 64: 513–519
  • Aujard F., Perret M., Vannier G. Thermoregulatory responses to variations of photoperiod and ambient temperature in the male lesser mouse lemur: a primitive or an advanced adaptive character?. J. Comp. Physiol. B. 1998; 168: 540–548
  • Aujard F., Dkhissi‐Benyahya O., Fournier I., Claustrat B., Schilling A., Cooper H. M., Perret M. Artificially accelerated aging by shortened photoperiod alters early gene expression (FOS) in the suprachiasmatic nucleus and sulfatoxymelatonin excretion in a small primate, Microcebus murinus. Neurosci. 2001; 105: 403–412
  • Bliwise D. L. Sleep apnea and cognitive function: where do we stand now?. Sleep 1993; 16: S72–873
  • Bons N., Mestre N., Petter A. Senile plaques and neurofibrillary changes in the brain of an aged lemurian primate Microcebus murinus. Neurobiol. Aging 1991; 13: 99–105
  • Brock M. A. Chronobiology, and aging. J. Am. Geriatric Soc. 1991; 39: 74–91
  • Cayetanot F., Van Someren E. J.W., Perret M., Aujard F. Shortened seasonal photoperiodic cycles accelerate aging of the diurnal and circadian locomotor activity rhythms in a primate. J. Biol. Rhythms. 2005a; 20(5)461–469
  • Cayetanot F., Bentivoglio M., Aujard F. Arginine‐vasopressin and vasointestinal polypeptide rhythms in the suprachiasmatic nucleus of the mouse lemur reveal aging‐related alterations of circadian pacemaker neurons in a non‐human primate. Eur. J. Neurosci. 2005b; 22: 902–910
  • Chou T. C., Scammell T. E., Gooley J. J., Gaus S. E., Saper C. B., Lu J. Critical role of dorsomedial hypothalmus nucleus in a wide range of behavioral circadian rhythms. J. Neurosci. 2003; 23: 10691–10702
  • Dardente H., Menet J. S., Challet E., Tournier B. B., Pevet P., Masson‐Pevet M. Daily and circadian expression of neuropeptides in the suprachiasmatic nuclei of nocturnal and diurnal rodents. Mol. Brain Res. 2004; 124: 143–151
  • Dhenain M., Michot J. L., Privat N., Picq J. L., Boller F., Duyckaerts C., Volk A. MRI description of cerebral atrophy in mouse lemur primates. Neurobiol. Aging 2000; 21: 81–88
  • Duncan M. J., Herron J. M., Hill S. A. Aging selectively supresses vasoactive intestinal peptide messenger RNA expression in the suprachiasmatic nucleus of Syrian hamster. Mol. Brain Res. 2001; 87: 196–203
  • Hofman M. A., Swaab D. F. Alterations in circadian rhythmicity of the vasopressin‐producing neurons of the human suprachiasmatic nucleus (SCN) with aging. Brain Res. 1994; 651: 134–142
  • Hofman M. A., Zhou J. N., Swaab D. F. No evidence for a diurnal vasoactive intestinal polypeptide (VIP) rhythm in the human suprachiasmatic nucleus. Brain Res. 1996; 722: 78–82
  • Huang Y. L., Liu R. Y., Wang Q. S., Van Someren E. J.W., Xu H., Zhou J. N. Age associated difference in circadian sleep‐wake and rest‐activity rhythms. Physiol. Behav. 2002; 76: 597–603
  • Ibata Y., Takahashi Y., Okamura H., Kawakami F., Terubayashi H., Kubo T., Yanaihara N. Vasoactive intestinal peptide (VIP)‐like immunoreactive neurons located in the rat suprachiasmatic nucleus receive a direct retinal projection. Neurosci. Lett. 1989; 97: 1–5
  • Kalamatianos T., Kallo I., Coen C. W. Ageing and the diurnal expression of the mRNAs for vasopressin and for the V1a and V1b vasopressin receptors in the suprachiasmatic nucleus of male rats. J. Neuroendocrinol. 2004; 16: 493–501
  • Kallo I., Kalamatianos T., Piggins H. D., Coen C. W. Ageing and the diurnal expression of mRNAs for vasoactive intestinal polypeptide and for the VPAC2 and VPAC1 receptors in the suprachiasmatic nucleus of male rats. J. Neuroendocrinol. 2004; 16: 758–766
  • Kawakami F., Okamura H., Tamada Y., Maebayashi Y., Fukui K., Ibata Y. Loss of day‐night differences in VIP mRNA levels in the suprachiasmatic nucleus of aged rats. Neurosci. Lett. 1997; 222: 99–102
  • Krajnak K., Kashon M. L., Rosewell K. L., Wise P. M. Aging alters the rhythmic expression of vasoactive intestinal polypeptide mRNA but not arginine vasopressin mRNA suprachiasmatic nuclei of female rats. J. Neurosci. 1998; 18: 4767–4774
  • Lucassen P. J., Hofman M. A., Swaab D. F. Increased light intensity prevents the age related loss of vasopressin expressing neurons in the rat suprachiasmatic nucleus. Brain Res. 1995; 693: 261–266
  • Moore R. Y. Entrainment pathways and the functional organization of the circadian system. Prog. Brain. Res. 1996; 111: 103–119
  • Némoz‐Bertholet F., Aujard F. Physical activity and balance performance as a function of age in a prosimian primate (Microcebus murinus). Exp. Gerontol. 2003; 38: 407–414
  • Penev P. D., Zee P. C., Turek F. W. Quantitative analysis of the age‐related fragmentation of hamster 24‐h activity rhythms. Am. J. Physiol. 1997; 273: R2132–R2137
  • Perret M. Environmental and social determinants of sexual function in the male lesser mouse lemur (Microcebus murinus). Folia Primatol. 1992; 59: 1–25
  • Perret M. Change in photoperiodic cycle affects life span in a prosimian primate (Microcebus murinus). J. Biol. Rhythms. 1997; 12: 136–145
  • Perret M., Aujard F., Vannier G. Influence of daylength on metabolic rate and daily water loss in the male prosimian primate Microcebus murinus. Comp. Biochem. Physiol. A. 1998; 119: 981–989
  • Piggins H. D., Antle M. C., Rusak B. Neuropeptides phase shift the mammalian circadian pacemaker. J. Neurosci. 1995; 15: 5612–5622
  • Reed H. E., Meyer‐Spasche A., Cutler D. J., Coen C. W., Piggins H. D. Vasoactive intestinal polypeptide (VIP) phase‐shifts the rat suprachiasmatic nucleus clock in vitro. Eur. J. Neurosci. 2001; 13: 839–843
  • Shinohara K., Tominaga K., Isobe Y., Inouye S. I. Photic regulation of peptides located in the ventrolateral subdivision of the suprachiasmatic nucleus of the rat: daily variations of vasoactive intestinal polypeptide, gastrin‐releasing peptide, and neuropeptide Y. J. Neurosci. 1993; 13: 793–800
  • Touitou Y., Portaluppi F., Smolensky M. H., Rensing L. Ethical principles and standards for the conduct of human and animal biological rhythm research. Chronobiol. Int. 2004; 21: 161–170
  • Valentinuzzi V. S., Scarbrough K., Takahashi J. S., Turek F. W. Effects of aging on the circadian rhythm of wheel‐running activity in C57BL/6 mice. Am. J. Physiol. 1997; 273: R1957–1964
  • Van Esseveldt L. K.E., Lehman M. N., Boer G. J. The suprachiasmatic nucleus and the circadian time‐keeping system revisited. Brain Res. Rev. 2000; 33: 34–77
  • Van Someren E. J.W., Swaab D. F., Colenda C. C., Cohen W., Vaughn McCall W., Rosenquist P. B. Bright light therapy: improved sensitivity to its effects on rest‐activity rhythms in Alzheimer patients by application of nonparametric methods. Chronobiol. Int. 1999; 16: 505–518
  • Zhou J. N., Hofman M. A., Swaab D. F. VIP neurons in the SCN in relation to sex, age, and Alzheimer's disease. Neurobiol. Aging 1995; 16: 571–576

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.