232
Views
14
CrossRef citations to date
0
Altmetric
Review

Constitutive Activation of Ras in Neurons: Implications for the Regulation of the Mammalian Circadian Clock

&
Pages 191-200 | Published online: 07 Jul 2009

References

  • Albrecht U., Sun Z. S., Eichele G., Lee C. C. A different response of two putative mammalian circadian regulators, mper1 and mper2, to light. Cell 1997; 91: 10055–10064
  • Allen G., Qu X., Earnest D. TrkB‐deficient mice show diminished phase shifts to the circadian activity rhythm in response to light. Neurosci. Lett. 2005; 378: 150–155
  • Arendt T., Seeger G., Barmashenko G., Palm K., Mittmann T., Li Yan L., Hümmeke M., Behrbohm J., Kamdem R. H., Brückner M. K., Gärtner U., Holzer M., Wahle P., Heumann R. Neuronal activation of Ras regulates synaptic connectivity. Eur. J. Neurosci. 2004; 19: 2953–2966
  • Bonni A., Brunet A., West A. E., Datta S. R., Takasu M. A., Greenberg M. E. Cell survival promoted by the Ras‐MAPK signaling pathway by transcription‐dependent and ‐independent mechanisms. Science 1999; 286: 1358–1362
  • Bos J. L. Epac: a new cAMP target and new avenues in cAMP research. Nat. Rev. Mol. Cell Biol. 2003; 4: 733–738
  • Butcher G., Dziema H., Collamore M., Burgoon P. W., Obrietan K. The p42/44 MAP kinase pathway couples photic input to circadian clock entrainment. J. Biol.Chem. 2002; 277: 29159–29525
  • Butcher G. Q., Lee B., Obrietan K. Temporal activation of light‐induced extracellular signal‐regulated kinase activation in the suprachiasmatic nucleus. J. Neurophysiol. 2003; 90: 3854–3863
  • Butcher G. Q., Lee B., Hsieh F., Obrietan K. Light‐ and clock‐dependent regulation of ribosomal S6 kinase activity in the suprachiasmatic nucleus. Eur. J. Neurosci. 2004; 19: 895–904
  • Butcher G. Q., Lee B., Cheng H. Y., Obrietan K. Light stimulates MSK1 activation in the suprachiasmatic nucleus via a PACAP‐ERK/MAP kinase‐dependent mechanism. J. Neurosci. 2005; 25: 5305–5313
  • Cavanaugh J. E., Ham J., Hetman M., Poser S., Yan C., Xia Z. Differential regulation of mitogen‐activated protein kinases ERK1/2 and ERK5 by neurotrophins, neuronal activity, and cAMP in neurons. J. Neurosci. 2001; 21: 434–443
  • Coogan A. N., Piggins H. D. Circadian and photic regulation of phosphorylation of ERK1/2 and Elk‐1 in the suprachiasmatic nuclei of the Syrian hamster. J. Neurosci. 2003; 23: 3085–3093
  • Ding J. M., Chen D., Webber E. T., Fariman L. E., Rea M. A., Gillette M. U. Resetting the biological clock: mediation of nocturnal circadian shifts by glutamate and NO. Science 1994; 266: 1713–1717
  • Dziema H., Oatis B., Butcher G., Yates R., Hoyt K. R., Obrietan K. The ERK/MAPK pathway couples light to immediate‐early gene expression in the suprachiasmatic nucleus. Eur. J. Neurosci. 2003; 17: 1617
  • Dziema H., Obrietan K. PACAP potentiates L‐type calcium channel conductance in suprachiasmatic nucleus neurons by activating the MAPK pathway. J. Neurophysiol. 2002; 88: 1374–1386
  • Farnsworth C. L., Freshney N. W., Rosen L. B., Ghosh A., Greenberg M. E., Feig L. A. Calcium activation of Ras mediated by neuronal exchange factor Ras‐GRF. Nature 1995; 376: 524–527
  • Gau D., Lembrger T., von Gall C., Kretz O., Le Minh N., Gass P., Schmid W., Schibler U., Korf H. W., Schutz G. Phosphorylation of CREB Ser142 regulates light‐induced phase shifts of the circadian clock. Neuron 2002; 34: 245–53
  • Ginty D. D., Kornhauser J. M., Thompson M. S., Bading H., Mayo K. E., Takahashi J. S., Greenberg M. E. Regulation of CREB phosphorylation in the suprachiasmatic nucleus by light and a circadian clock. Science 1993; 260: 238–241
  • Hansen H. H., Briem T., Dzietko M., Sifringer M., Voss A., Rzeski W., Zdzisinska B., Friederike T., Heumann R., Stepulak A., Bittigau P., Ikonomidou Ch. Mechanisms leading to disseminated apoptosis following NMDA receptor blockade in the developing rat brain. Neurobiol. Dis. 2004; 16: 440–453
  • Harada Y., Sakai M., Kurabayashi N., Hirota T., Fukada Y. Ser‐557‐phosphorylated mCRY2 is degraded upon synergistic phosphorylation by glycogen synthase kinase‐3beta. J. Biol. Chem. 2005; 280: 31714–31721
  • Hastings M. H., Reddy A. K., Maywood E. S. A clockwork web: circadian timing in brain and periphery, in health and disease. Nat. Neurosci. Rev. 2003; 4: 649–661
  • Hayashi Y., Sanada K., Fukuda Y. Circadian and photic regulation of MAPK by Ras‐ and protein phosphatase‐dependent pathways in the chick pineal gland. FEBS Lett. 2001; 491: 71–75
  • Heumann R. Neurotrophin signalling. Curr. Opin. Neurobiol. 1994; 4: 668–679
  • Heumann R., Goemans C., Bartsch D., Lingenhohl K., Waldmeier P. C., Hengerer B., Allegrini P. R., Schellander K., Wagner E. F., Arendt T., Kamdem R. H., Obst‐Pernberg K., Narz F., Wahle P., Berns H. Transgenic activation of Ras in neurons promotes hypertrophy and protects from lesion‐induced degeneration. J. Cell Biol. 2000; 151: 1537–1548
  • Johnson G. L., Lapadat R. Mitogen‐activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 2002; 298: 1191–1192
  • Katz M. E., McCormick F. Signal transduction from multiple Ras effectors. Curr. Opin. Genet. Dev. 1997; 7: 75–79
  • Kurino M., Fukunaga K., Ushio Y., Miyamoto E. Activation of mitogen‐activated protein kinase in cultured rat hippocampal neurons by stimulation of glutamate receptors. J. Neurochem. 1995; 65: 1282–1289
  • Liang F. Q., Walline R., Earnest D. J. Circadian rhythm of brain‐derived neurotrophic factor in the rat suprachiasmatic nucleus. Neurosci. Lett. 1998; 242: 89–92
  • Liang F. Q., Allen G., Earnest D. Role of brain‐derived neurotrophic factor in the circadian regulation of the suprachiasmatic pacemaker by light. J. Neurosci. 2000; 20: 2978–2987
  • Obrietan K., Impey S., Storm D. R. Light and circadian rhythmicity regulate MAP kinase activation in the suprachiasmatic nuclei. Nat. Neurosci. 1998; 1: 693–700
  • Obrietan K., Impey I., Smith D., Athos J., Storm D. R. Circadian regulation of cAMP response element‐mediated gene expression in the suprachiasmatic nuclei. J. Biol. Chem. 1999; 274: 17748–17755
  • Oh J. S., Manzerra P., Kennedy M. B. Regulation of the neuron‐specific Ras GTPase‐activating protein, synGAP, by Ca2+/calmodulin‐dependent protein kinase II. J. Biol. Chem. 2004; 279: 17980–17988
  • Pittendrigh C. S., Daan S. Circadian oscillations in rodents: a systematic increase of their frequency with age. Science 1974; 186: 548–550
  • Reppert S. M., Weaver D. R. Molecular analysis of mammalian circadian rhythms. Ann. Rev. Physiol. 2001; 63: 647–676
  • Reppert S. M., Weaver D. R. Coordination of circadian timing in mammals. Nature 2002; 418: 935–941
  • Rusak B., Robertson H. A., Wisden W., Hunt S. P. Light pulses that shift rhythms induce gene expression in the suprachiasmatic nucleus. Science 1990; 248: 1237–1240
  • Rusak B., McNaughton L., Robertson H. A., Hunt S. P. Circadian variation in photic regulation of immediate‐early gene mRNAs in rat suprachiasmatic nucleus cells. Mol. Brain Res. 1992; 14: 124–130
  • Sanada K., Okano T., Fukuda Y. MAPK phosphorylates and negatively regulates basic helix‐loop‐helix‐PAS transcription factor BMAL1. J. Biol. Chem. 2002; 277: 267–271
  • Shimizu K., Okada M., Nagai K., Fukada Y. Suprachiasmatic nucleus circadian oscillatory protein, a novel binding partner of K‐Ras in the membrane rafts, negatively regulates MAPK pathway. J. Biol. Chem. 2003; 278: 14920–14925
  • Stehle J. H., Pfeffer M., Kuhn R., Korf H. W. Light‐induced expression of transcription factor ICER inducible cAMP early repressor in rat suprachiasmatic nucleus is phase‐restricted. Neurosci. Lett. 1996; 217: 169–172
  • Takahashi H., Umeda N., Tsutsumi Y. Mouse dexamethasone‐induced Ras protein 1 gene is expressed in circadian rhythmic manner in the suprachiasmatic nuclei. Mol. Brain Res. 2003; 110: 1–6
  • Tischkau S. A., Mitchell J. W., Tyan S. H., Buchanan G. F., Gillette M. U. Ca2+/cAMP response element‐binding protein CREB‐dependent activation of Per1 is required for light‐induced signalling in the suprachiasmatic nucleus circadian clock. J. Biol. Chem. 2003; 278: 718–723
  • Travnichkova‐Bendova Z., Cermakian N., Reppert S. M., Sassone‐Corsi P. Bimodal regulation of mPeriod promoters by CREB‐dependant signalling and CLOCK/BMAL1 activity. Proc. Natl. Acad. Sci. USA 2002; 99: 7728–7733
  • von Gall C., Duffield G. E., Hastings M. H., Kopp M. D., Dehghani F., Korf H. W., Stehle J. H. CREB in the mouse SCN: a molecular interface coding the phase‐adjusting stimuli light, glutamate, PACAP, and melatonin for clockwork access. J. Neurosci. 1998; 18: 10389–10397
  • Waetzig V., Herdegen T. MEKK1 controls neurite regrowth after experimental injury by balancing ERK1/2 and JNK2 signalling. Mol. Cell. Neurosci. 2005; 30: 67–78
  • Wang J. Q., Tang Q., Parelkar N. K., Liu Z., Samdani S., Choe E. S., Yang L., Mao L. Glutamate signalling to Ras‐MAPK in striatal neurons: mechanisms for inducible gene expression and plasticity. Mol. Neurobiol. 2004; 29: 1–14
  • Wilsbacher L. D., Yamazaki S., Herzog E. D., Song E. J., Radcliffe L. A., Abe M., Block G., Spitznagel E., Menaker M., Takahashi J. S. Photic and circadian expression of luciferase in mPeriod1‐luc transgenic mice in vivo. Proc. Natl. Acad. Sci. USA 2002; 99: 489–494
  • Witinghofer A. Signal transduction via Ras. Biol. Chem. 1998; 379: 933–937
  • West A. E., Chen W. G., Dalva M. B., Dolmetsch R. E., Kornhauser J. M., Shaywitz A. J., Takasu M. A., Tao X., Greenberg M. E. Calcium regulation of neuronal gene expression. Proc. Natl. Acad. Sci. USA 2001; 98: 11024–11031
  • Wojnowski L., Stancato L. F., Larner A. C., Rapp U. R., Zimmer A. Overlapping and specific functions of Braf and Craf‐1 proto‐oncogenes during mouse embryogenesis. Mech. Dev. 2000; 91: 97–104
  • Zylka M. J., Sherman L. P., Weaver D. R., Reppert S. M. Three period homologs in mammals: different light responses in the suprachiasmatic circadian clock and oscillating transcripts outside of brain. Neuron 1998; 20: 1103–1110

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.