611
Views
33
CrossRef citations to date
0
Altmetric
Original

High‐intensity red light suppresses melatonin

, , , , &
Pages 251-268 | Published online: 07 Jul 2009

References

  • Arendt J. Melatonin and the pineal gland: Influence on mammalian seasonal and circadian physiology. Rev. Reprod. 1998; 3: 13–22
  • Aschoff J. Handbook of Behavioral Neurobiology, Biological Rhythms, J. Aschoff. Plenum Press, New York 1981; 1–563
  • Berson D. M., Dunn F. A., Takao M. Phototransduction by retinal ganglion cells that set the circadian clock. Science 2002; 295: 1070–1073
  • Boulos Z., Campbell S. S., Lewy A. J., Terman M., Dijk D.‐J., Eastman C. I. Light treatment for sleep disorders: Consensus report. VII. Jet lag. J. Biol. Rhythms 1995; 10: 167–176
  • Brainard G. C. Illumination of laboratory animal quarters: Participation of light irradiance and wavelength in the regulation of the neuroendocrine system. Science and Animals: Addressing Contemporary Issues, H. N. Guttman, J. A. Mench, R. C. Simmonds. Scientists Center for Animal Welfare, Bethesda, Maryland 1989; 69–74
  • Brainard G. C., Hanifin J. P. Photons, clocks and consciousness. J. Biol. Rhythms 2005; 20: 314–325
  • Brainard G. C., Richardson B. A., King T. S., Matthews S. A., Reiter R. J. The suppression of pineal melatonin content and N‐acetyltransferase activity by different light irradiances in the Syrian hamster: A dose‐response relationship. Endocrinology 1983; 113: 293–296
  • Brainard G. C., Rollag M. D., Hanifin J. P. Photic regulation of melatonin in humans: ocular and neural signal transduction. J. Biol. Rhythms 1997; 12: 537–546
  • Brainard G. C., Hanifin J. P., Rollag M. D., Greeson J., Byrne B., Glickman G., Gerner E., Sanford B. Human melatonin regulation is not mediated by the three cone photopic visual system. J. Clin. Endocrinol. Metab. 2001a; 86: 433–436
  • Brainard G. C., Hanifin J. P., Greeson J. M., Byrne B., Glickman G., Gerner E., Rollag M. D. Action spectrum for melatonin regulation in humans: Evidence for a novel circadian photoreceptor. J. Neurosci. 2001b; 21: 6405–6412
  • Broker B. J., Hanifin J. P., Rollag M. D., Stetson M. H., Brainard G. C. Suppression of pineal melatonin content in Long Evans Hooded rats: Dose‐response curve at 640 nm. 19th Annual Meeting of the Society for Neuroscience 1990; 15: 951
  • Commission Internationale de l'Eclairage. International Lighting Vocabulary. CIE Publication No. 17.4, Vienna 1987
  • Coohill T. P. Action spectra again?. Photochem. Photobiol. 1991; 54: 859–870
  • Czeisler C. A., Allan J. S., Strogatz S. H., Ronda J. M., Sanchez R., Rios C. D., Freitag W. O., Richardson G. S., Kronauer R. E. Bright light resets the human circadian pacemaker independent of the timing of the sleep‐wake cycle. Science 1986; 233: 667–671
  • Czeisler C. A., Kronauer R. E., Allan J. S., Duffy J. F., Jewett M. E., Brown E. N., Ronda J. M. Bright light induction of strong (Type 0) resetting of the human circadian pacemaker. Science 1989; 244: 1328–1333
  • Czeisler C. A., Duffy J. F., Shanahan T. L., Brown E. N., Mitchell J. F., Rimmer D. W., Ronda J. M., Silva E. J., Allan J. S., Emens J. S., Dijk D. J., Kronauer R. E. Stability, precision, and near‐24‐hour period of the human circadian pacemaker. Science 1999; 284: 2177–2181
  • Dacey D. M., Liao H.‐W., Peterson B. B., Robinson F. R., Smith V. C., Pokorny J., Yau K.‐W., Gamlin P. D. Melanopsin‐expressing ganglion cells in primate retina signal colour and irradiance and project to the LGN. Nature 2005; 433: 749–754
  • Dijk D. J., Neri D. F., Wyatt J. K., Ronda J. M., Riel E. A.R.‐D., Hughes R. J., Elliott A. R., Prisk G. K., West J. B., Czeisler C. A. Sleep, performance, circadian rhythms, and light‐dark cycles during two space shuttle flights. Am. J. Physiol. 2001; 281: R1647–R1664
  • Eastman C. I., Boulos Z., Terman M., Campbell S. S., Dijk D.‐J., Lewy A. J. Light treatment for sleep disorders: Consensus report. VI. Shift work. J. Biol. Rhythms 1995; 10: 157–164
  • Foster R. G., Provencio I., Hudson D., Fiske S., DeGrip W., Menaker M. Circadian photoreception in the retinally degenerate mouse (rd/rd). J. Comp. Physiol. [A] 1991; 169: 39–50
  • Freedman M. S., Lucas R. J., Soni B., von Schantz M., Munoz M., David‐Gray Z., Foster R. G. Regulation of mammalian circadian behavior by non‐rod, non‐cone, ocular photoreceptors. Science 1999; 284: 502–504
  • Gooley J. J., Lu J., Chou T. C., Scammell T. E., Saper C. B. Melanopsin in cell of origin of the retinohypothalamic tract. Nat. Neurosci. 2001; 4: 1165
  • Grossweiner L. I. Photophysics. The Science of Photobiology, K. C. Smith. Plenum Press, New York 1989; 1–45
  • Hankins M. W., Lucas R. J. The primary visual pathway in humans is regulated according to long‐term light exposure through the action of a nonclassical photopigment. Curr. Biol. 2002; 12: 191–198
  • Hannibal J., Hindersson P., Knudsen S. M., Georg B., Fahrenkrug J. The photopigment melanopsin is exclusively present in pituitary adenylate cyclase‐activating polypeptide‐containing retinal ganglion cells of the retinohypothalamic tract. J. Neurosci. 2002; 22: 1–7
  • Hannibal J., Hindersson P., Ostergaard J., Georg B., Heegaard S., Larsen P. J., Fahrenkrug J. Melanopsin is expressed in PACAP‐containing retinal ganglion cells of the human retinohypothalamic tract. Invest. Ophthalmol. Vis. Sci. 2004; 45: 4202–4209
  • Hattar S., Liao H.‐W., Takao M., Berson D. M., Yau K.‐W. Melanopsin‐containing retinal ganglion cells: Architecture, projections, and intrinsic photosensitivity. Science 2002; 295: 1065–1070
  • Hattar S., Lucas R. J., Mrosovsky N., Thompson S., Douglas R. H., Hankins M. W., Lem J., Biel M., Hofmann F., Foster R. G., Yau K.‐W. Melanopsin and rod‐cone photoreceptive systems account for all major accessory visual functions in mice. Nature 2003; 424: 76–81
  • Honma S., Kanematsu N., Katsuno Y., Honma K. Light suppression of nocturnal pineal and plasma melatonin in rats depends on wavelength and time of day. Neurosci. Lett. 1992; 147: 201–204
  • Huck F. O., Jobson D. J., Park S. K., Wall S. D., Arvidson R. E., Patterson W. R., Benton W. D. Spectrophotometric and color estimates of the Viking lander sites. J. Geophys. Res. 1977; 82: 4401–4411
  • Illuminating Engineering Society of North America. Recommended Practice for Photobiological Safety for Lamps and Lamp Systems‐ Measurement Techniques. Illuminating Engineering Society of North America, RP 27.3, New York 2001
  • Klein D. C., Moore R. Y., Reppert S. M. Suprachiasmatic Nucleus: The Mind's Clock, D. C. Klein, R. Y. Moore, S. M. Reppert. Oxford University Press, Oxford 1991; 5–456
  • Klein D. C., Weller J. L. Rapid light‐induced decrease in pineal serotonin N‐acetyltransferase activity. Science 1972; 177: 532–533
  • Lambert H. H. Continuous red light induced persistant estrus without retinal degeneration in the albino rat. Endocrinology 1975; 97: 208–210
  • Lewy A. J., Wehr T. A., Goodwin F. K., Newsome D. A., Markey S. P. Light suppresses melatonin secretion in humans. Science 1980; 210: 1267–1269
  • Lewy A. J., Sack R. L., Miller L. S., Hoban T. M. Antidepressant and circadian phase‐shifting effects of light. Science 1987; 235: 352–354
  • Lipson E. D. Action spectroscopy: Methodology. Organic Photochemistry and Photobiology, W. M. Horspool, P.‐S. Song. CRC Press, New York 1994; 1257–1266
  • Lucas R. J., Freedman M. S., Munoz M., Garcia‐Fernandez J. M., Foster R. G. Regulation of the mammalian pineal by non‐rod, non‐cone, ocular photoreceptors. Science 1999; 284: 505–507
  • Lucas R. J., Douglas R. H., Foster R. G. Characterization of an ocular photopigment capable of driving pupillary constriction in mice. Nat. Neurosci. 2001; 4: 621–626
  • Lucas R. J., Hattar S., Takao M., Berson D. M., Foster R. G., Yau K. W. Diminished pupillary light reflex at high irradiances in melanopsin‐knockout mice. Science 2003; 299: 245–247
  • Maki J. N., Lorre J. J., Smith P. H., Brandt R. D., Steinwand D. J. The color of Mars: Spectrophotometric measurements at the Pathfinder landing site. J. Geophys. Res. 1999; 104: 8781–8794
  • Matthes R., Sliney D., Didomenico S., Murray P., Phillips R., Wengraitis S. Measurements of Optical Radiation Hazards, R. Matthes, D. Sliney, S. Didomenico, P. Murray, R. Phillips, S. Wengraitis. ICNIRP, Munchen, Germany 1999; 1–762
  • McCormack C. E., Sontag C. R. Entrainment by red light of running activity and ovulation rhythms of rats. Am. J. Physiol. 1980; 239: R450–R453
  • Melyan Z., Tarttelin E. E., Bellingham J., Lucas R. J., Hankins M. W. Addition of human melanopsin renders mammalian cells photoresponsive. Nature 2005; 433: 741–745
  • Moore R. Y. Organization and function of a central nervous system circadian oscillator: the suprachiasmatic hypothalamic nucleus. Fed. Proc. 1983; 42: 2783–2789
  • Morin L. P. The circadian visual system. Brain Res. Brain Res. Rev. 1994; 19: 102–127
  • Mrosovsky N. Contribution of classic photoreceptors to entrainment. J. Comp. Physiol. [A] 2003; 189: 69–73
  • Nguyen D. C., Hanifin J. P., Rollag M. D., Stetson M. H., Brainard G. C. The influence of different photon densities of 620 nm light on pineal melatonin in Syrian hamsters. Anat. Rec. 1990; 226: 72A
  • Panda S., Sato T. K., Castrucci A. M., Rollag M. D., DeGrip W. J., Hogensch J. B., Provencio I., Kay S. A. Melanopsin (Opn4) requirement for normal light‐induced circadian phase‐shifting. Science 2002; 298: 2213–2216
  • Panda S., Nayak S. K., Campo B., Walker J. R., Hogenesch J. B., Jegla T. Illumination of melatonin signaling pathway. Science 2005; 307: 600–604
  • Podolin P. C., Rollag M. D., Brainard G. C. The suppression of nocturnal pineal melatonin in the Syrian hamster: Dose‐response curves at 500 nm and 360 nm. Endocrinology 1987; 121: 266–270
  • Poeggler B. H., Barlow‐Walden L. R., Reiter R. J., Saarela S., Menendez‐Pelaez A., Yaga K., Manchester L. C., Chen L. D., Tan D. X. Red‐light‐induced suppression of melatonin synthesis is mediated by N‐methyl‐D‐aspartate receptor activation in retinally normal and retinally degenerate rats. J. Neurobiol. 1995; 28: 1–8
  • Provencio I., Foster R. G. Circadian rhythms in mice can be regulated by photoreceptors with cone‐like characteristics. Brain Res. 1995; 694: 183–190
  • Provencio I., Jiang G., De Grip W. J., Hayes W. P., Rollag M. D. Melanopsin: an opsin in melanophores, brain, and eye. Proc. Natl. Acad. Sci. USA 1998; 95: 340–345
  • Provencio I., Rodriguez I. R., Jiang G., Hayes W. P., Moreira E. F., Rollag M. D. A novel human opsin in the inner retina. J. Neurosci. 2000; 20: 600–605
  • Provencio I., Rollag M. D., Castrucci A. M. Photoreceptive net in the mammalian retina. Nature 2002; 415: 493
  • Qiu X., Kumbalasiri T., Carlson S. M., Wong K. Y., Krishna V., Provencio I., Berson D. Induction of photosensitivity by heterologous expression of melatonin. Nature 2005; 433: 745–749
  • Reiter R. J. Pineal gland: Interface between the photoperiodic environment and the endocrine system. Trends Endocrinol. Metab. 1991; 2: 13–19
  • Rollag M. D. Amphibian melanophores become photosensitive when treated with retinal. J. Exp. Zool. 1996; 275: 20–26
  • Rollag M. D., Niswender G. D. Radioimmunoassay of serum concentrations of melatonin in sheep exposed to different lighting regimens. Endocrinology 1976; 98: 482–489
  • Rollag M. D., Berson D. M., Provencio I. Melanopsin, ganglion‐cell photoreceptors, and mammalian photoentrainment. J. Biol. Rhythms 2003; 18: 227–234
  • Ruby N., Brennan T., Xie X., Cao V., Franken P., Heller H., O'Hara B. Role of melanopsin in circadian responses to light. Science 2002; 298: 2211–2213
  • Smith P. H., Reynolds R., Weinberg J., Friedman T., Lemmon M. T., Tanner R., Reid R. J., Marcialis R. L., Bos B. J., Oquest C., Keller H. U., Markiewicz W. J., Kramm R., Gliem F., Rueffer P. The MVACS surface stereo imager on Mars polar lander. J. Geophys. Res. 2001; 106: 17589–17607
  • Sun J. H., Yaga K., Reiter R. J., Garza M., Manchester L. C., Tan D. X., Poeggler B. Reduction in pineal N‐acetyltransferase activity and pineal and serum melatonin levels in rats after their exposure to red light at night. Neurosci. Lett. 1993; 149: 56–58
  • Thapan K., Arendt J., Skene D. J. An action spectrum for melatonin suppression: Evidence for a novel non‐rod, non‐cone photoreceptor system in humans. J. Physiol. 2001; 535: 261–267
  • Thorington L. Spectral, irradiance, and temporal aspects of natural and artificial light. The Medical and Biological Effects of Light, R. J. Wurtman, M. J. Baum, J. J.T. Potts. The New York Academy of Sciences, New York 1985; 28–54
  • Tirney S., Hanifin J., Rollag M., Brainard G. Melatonin suppression with red light: A dose‐response function for a broad‐band red source. Anat. Rec. 1992; 232: 87A
  • Touitou Y., Portaluppi F., Smolensky M. H., Rensing L. Ethical principles and standards for the conduct of human and biological rhythm research. Chronobiol Int. 2004; 21: 161–170
  • Vanecek J., Illnerova H. Night pineal N‐acetyltransferase activity in rats exposed to white or red light pulses of various intensities and duration. Experientia 1982; 38: 1318–1320
  • Wehr T. A. The durations of human melatonin secretion and sleep respond to changes in daylength (photoperiod). J. Clin. Endocrinol. Metab. 1991; 73: 1276–1280
  • Wehr T. A., Moul D. E., Barbato G., Giesen H. A., Seidel J. A., Barker C., Bender C. Conservation of photoperiod‐responsive mechanisms in humans. Am. J. Physiol. 1993; 265: R846–R857
  • Wright H. R., Lack L. C., Kennaway D. J. Differential effects of light wavelength in phase advancing the melatonin rhythm. J. Pineal Res. 2004; 36: 140–144
  • Yoshimura T., Ebihara S. Spectral sensitivity of photoreceptors mediating phase‐shifts of circadian rhythms in retinally degenerate CBA/J (rd/rd) and normal CBA/N (+/+) mice. J. Comp. Physiol. [A] 1996; 178: 797–802
  • Zeitzer J. M., Kronauer R. E., Czeisler C. A. Photopic transduction implicated in human circadian entrainment. Neurosci. Lett. 1997; 232: 135–138
  • Zeitzer J. M., Dijk D.‐J., Kronauer R. E., Brown E. N., Czeisler C. A. Sensitivity of the human circadian pacemaker to nocturnal light: Melatonin phase resetting and suppression. J. Physiol. 2000; 526: 695–702
  • Zervanos S. M., Davis D. E. Perception of red light in wood‐rats (Neotoma floridana). J. Mammal. 1968; 49: 759

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.