446
Views
22
CrossRef citations to date
0
Altmetric
Original

The aging suprachiasmatic nucleus and cytokines: functional, molecular, and cellular changes in rodents

, , , &
Pages 437-449 | Published online: 07 Jul 2009

References

  • Abrahamson E. E., Moore R. Y. Suprachiasmatic nucleus in the mouse: retinal innervation, intrinsic organization and efferent projections. Brain Res. 2001; 916: 172–191
  • Alexander W. S. Suppressors of cytokine signalling (SOCS) in the immune system. Nat. Rev. Immunol. 2002; 2: 410–416
  • Asai M., Yoshinobu Y., Kaneko S., Mori A., Nikaido T., Moriya T., Akiyama M., Shibata S. Circadian profile of Per gene mRNA expression in the suprachiasmatic nucleus, paraventricular nucleus, and pineal body of aged rats. J. Neurosci. Res. 2001; 66: 1133–1139
  • Aujard F., Herzog E. D., Block G. D. Circadian rhythms in firing rate of individual suprachiasmatic nucleus neurons from adult and middle‐aged mice. Neuroscience 2001; 106: 255–261
  • Bentivoglio M., Sadki A., Deng X.‐H. Age‐related response of brain cells to pro‐inflammatory cytokines in the mouse. J. Neuroimmunol. 2004; 154: 169
  • Bodles A. M., Barger S. W. Cytokines and the aging brain—what we don't know might help us. Trends Neurosci. 2004; 27: 621–626
  • Campbell I. L. Cytokine‐mediated inflammation, tumorigenesis, and disease‐associated JAK/STAT/SOCS signaling circuits in the CNS. Brain Res. Rev. 2005; 48: 166–177
  • Chee C. A., Roozendaal B., Swaab D. F., Goudsmit E., Mirmiran M. Vasoactive intestinal polypeptide neuron changes in the senile rat suprachiasmatic nucleus. Neurobiol. Aging 1988; 9: 307–312
  • DeVeale B., Brummel T., Seroude L. Immunity and aging: the enemy within?. Aging Cell 2004; 3: 195–208
  • Hertz L., Zielke H. R. Astrocytic control of glutamatergic activity: astrocytes as stars of the show. Trends Neurosci. 2004; 27: 735–743
  • Kallo I., Kalamatianos T., Piggins H. D., Coen C. W. Ageing and the diurnal expression of mRNAs for vasoactive intestinal peptide and for the VPAC2 and PAC1 receptors in the suprachiasmatic nucleus of male rats. J. Neuroendocrinol. 2004; 16: 758–766
  • Lundkvist G. B., Robertson B., Mhlanga J. D., Rottenberg M. E., Kristensson K. Expression of an oscillating interferon‐gamma receptor in the suprachiasmatic nuclei. Neuroreport 1998; 9: 1059–1063
  • Lundkvist G. B., Hill R. H., Kristensson K. Disruption of circadian rhythms in synaptic activity of the suprachiasmatic nuclei by African trypanosomes and cytokines. Neurobiol. Dis. 2002; 11: 20–27
  • Lundkvist G. B., Kristensson K., Bentivoglio M. Why trypanosomes cause sleeping sickness. Physiology (News in Physiological Sciences) 2004; 19: 198–206
  • Madeira M. D., Sousa N., Santer R. M., Paula‐Barbosa M. M., Gundersen H. J. Age and sex do not affect the volume, cell numbers, or cell size of the suprachiasmatic nucleus of the rat: an unbiased stereological study. J. Comp. Neurol. 1995; 361: 585–601
  • Marpegán L., Bekinschtein T. A., Costas M. A., Golombek D. A. Circadian responses to endotoxin treatment in mice. J. Neuroimmunol. 2005; 160: 102–109
  • Morin L. P., Johnson R. F., Moore R. Y. Two brain nuclei controlling circadian rhythms are identified by GFAP immunoreactivity in hamsters and rats. Neurosci. Lett. 1989; 99: 55–60
  • Nikolich‐Zugich J. T cell aging. J. Exp. Med. 2005; 201: 837–840
  • Nygård M., Hill R. H., Wikstrom M. A., Kristensson K. Age‐related changes in electrophysiological properties of the mouse suprachiasmatic nucleus in vitro. Brain Res. Bull. 2005; 65: 149–154
  • Nygård M., Palomba M. The GABAergic network in the suprachiasmatic nucleus as a key regulator of the biological clock: does it change during senescence?. Chronobiol. Int. 2006; 23
  • Ohdo S., Koyanagi S., Suyama H., Higuchi S., Aramaki S. Changing the dosing schedule minimizes the disruptive effects of interferon on clock function. Nat. Med. 2001; 7: 356–360
  • Prinz P. N. Age impairments in sleep, metabolic and immune functions. Exp. Gerontol. 2004; 39: 1739–1743
  • Prosser R. A., Dale E. M., Heller H. C., Miller J. D. A possible glial role in the mammalian circadian clock. Brain Res. 1994; 643: 296–301
  • Raivich G., Banati R. Brain microglia and blood‐derived macrophages: molecular profiles and functional roles in multiple sclerosis and animal models of autoimmune demyelinating disease. Brain Res. Rev. 2004; 46: 261–281
  • Raivich G., Bohatschek M., Kloss C. U.A., Werner A., Jones L. L., Kreutzberg G. W. Neuroglial activation repertoire in the injured brain: graded response, molecular mechanisms and cues to physiological function. Brain Res. Rev. 1999; 30: 77–105
  • Rieux C., Carney R., Lupi D., Dkhissi‐Benyahya O., Jansen K., Chounlamountri N., Foster R. G., Cooper H. M. Analysis of immunohistochemical label of Fos protein in the suprachiasmatic nucleus: comparison of different methods of quantification, J. Biol. Rhythms 2002; 17: 121–136
  • Robertson B., Kong G.‐Y., Peng Z.‐C., Bentivoglio M., Kristensson K. Interferon‐γ‐responsive neuronal sites in the normal rat brain: receptor protein distribution and cell activation revealed by Fos induction. Brain Res. Bull. 2000; 52: 61–74
  • Sadki A., Bentivoglio M., Kristensson K., Nygård M. Suppressors, receptors and effects of cytokines on the aging mouse biological clock. Neurobiol. Aging. 2006, [Epub ahead of print]
  • Satinoff E., Li H., Tcheng T. K., Liu C., McArthur A. J., Medanic M., Gillette M. U. Do the suprachiasmatic nuclei oscillate in old rats as they do in young ones?. Am. J. Physiol. 1993; 265: R1216–1222
  • Saurwein‐Teissl M., Blasko I., Zisterer K., Neuman B., Lang B., Grubeck‐Loebenstein B. An imbalance between pro‐ and anti‐inflammatory cytokines, a characteristic feature of old age. Cytokine 2000; 12: 1160–1161
  • Sutin E. L., Dement W. C., Heller H. C., Kilduff T. S. Light‐induced gene expression in the suprachiasmatic nucleus of young and aging rats. Neurobiol. Aging 1993; 14: 441–446
  • Tsukahara S., Tanaka S., Ishida K., Hoshi N., Kitagawa H. Age‐related change and its sex differences in histoarchitecture of the hypothalamic suprachiasmatic nucleus of F344/N rats. Exp. Gerontol. 2005; 40: 147–155
  • Touitou Y., Portaluppi F., Smolensky M. H., Rensing L. Ethical standards and principles for the conduct of human and animal biological rhythm research. Chronobiol. Int. 2004; 21: 161–170
  • van den Pol A. N., Finkbeiner S. M., Cornell‐Bell A. H. Calcium excitability and oscillations in suprachiasmatic nucleus neurons and glia in vitro. J. Neurosci. 1992; 12: 2648–2664
  • Watanabe A., Shibata S., Watanabe S. Circadian rhythm of spontaneous neuronal activity in the suprachiasmatic nucleus of old hamster in vitro. Brain Res. 1995; 695: 237–239
  • Weinert D. Age‐dependent changes of the circadian system. Chronobiol. Int. 2000; 17: 261–283
  • Yamazaki S., Straume M., Tei H., Sakaki Y., Menaker M., Block G. D. Effects of aging on central and peripheral mammalian clocks. Proc. Natl. Acad. Sci. USA. 2002; 99: 10801–10806
  • Zhang Y., Kornhauser J. M., Zee P. C., Mayo K. E., Takahashi J. S., Turek F. W. Effects of aging on light‐induced phase‐shifting of circadian behavioral rhythms, fos expression and CREB phosphorylation in the hamster suprachiasmatic nucleus. Neuroscience 1996; 70: 951–961

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.