678
Views
65
CrossRef citations to date
0
Altmetric
Original

Evolution of The Vertebrate Pineal Gland: The Aanat Hypothesis

Pages 5-20 | Published online: 07 Jul 2009

References

  • Appelbaum L., Toyama R., Dawid I. D., Klein D. C., Baler R., Gothilf Y. Zebrafish serotonin N‐acetyltransferase‐2 gene regulation: Pineal‐restrictive downstream module contains a functional E‐box and three photoreceptor conserved elements. Mol. Endocrinol. 2004; 5: 1210–1221
  • Appelbaum L., Anzulovich A., Baler R., Gothilf Y. Homeobox‐clock protein interaction in zebrafish. A shared mechanism for pineal‐specific and circadian gene expression. J. Biol. Chem. 2005; 280(12)11544–11551
  • Araki M. Developmental potency of cultured pineal cells: an approach to pineal developmental biology. Microsc. Res. Tech. 2001; 53: 33–42
  • Araki M., Watanabe K., Tokunaga F., Nonaka T. Phenotypic expression of photoreceptor and endocrine cell properties by cultured pineal cells of the newborn rat. Cell Differ. Dev. 1988; 25(2)155–163
  • Araki M., Kodama R., Eguchi G., Yasujima M., Orii H., Watanabe K. Retinal differentiation from multipotential pineal cells of the embryonic quail. Neurosci. Res. 1993; 18(1)63–72
  • Babila T., Schaad N. C., Simonds W. F., Shinohara T., Klein D. C. Development of MEKA (phosducin): G beta, G gamma, and S‐antigen in the rat pineal gland and retina. Brain Res. 1992; 585: 141–148
  • Bader J. L., Miller R. W., Meadows A. T., Zimmerman L. E., Champion L. A., Voute P. A. Trilateral retinoblastoma. Lancet ii 1980; 582–583
  • Barrett P., Conway S., Morgan P. J. Digging deep–structure‐function relationships in the melatonin receptor family. J. Pineal Res. 2003; 35: 221–230
  • Ben‐Shabat S., Parish C. A., Vollmer H. R., Itagaki Y., Fishkin N., Nakanishi K., Sparrow J. R. Biosynthetic studies of A2E, a major fluorophore of retinal pigment epithelial lipofuscin. J. Biol. Chem. 2002; 277: 7183–7190
  • Bernard M., Donohue S. J., Klein D. C. Human hydroxyindole‐O‐methyltransferase in pineal gland, retina and Y79 retinoblastoma cells. Brain Res. 1995; 696: 37–48
  • Bernard M., Dinet V., Voisin P. Transcriptional regulation of the chicken hydroxyindole‐O‐methyltransferase gene by the cone‐rod homeobox containing protein. J. Neurochem. 2001; 79: 248–257
  • Bernstein P. S., Rando R. R. The specific inhibition of 11‐cis‐retinyl palmitate formation in the frog eye by diaminophenoxypentane, an inhibitor of rhodopsin regeneration. Vision Res. 1985; 25: 741–748
  • Bernstein P. S., Lichtman J. R., Rando R. R. Short‐circuiting the visual cycle with retinotoxic aromatic amines. Proc. Natl. Acad. Sci. USA. 1986; 83: 1632–1635
  • Binkley S. A., Riebman J. B., Reilly K. B. The pineal gland: a biological clock in vitro. Science 1978; 202: 1198–1200
  • Blackshaw S., Snyder S. H. Developmental expression pattern of phototransduction components in mammalian pineal implies a light‐sensing function. J. Neurosci. 1997; 17: 8074–8082
  • Cahill G. M., Grace M. S., Besharse J. C. Rhythmic regulation of retinal melatonin: metabolic pathways, neurochemical mechanisms, and the ocular circadian clock. Cell Mol. Neurobiol. 1991; 11: 529–560
  • Calvo J., Boya J. Embryonic development of the rat pineal gland. Anat. Rec. 1981; 200: 491–500
  • Cassone V. M. Melatonin and suprachiasmatic nucleus function. Suprachiasmatic Nucleus: The Mind's Clock, D. C. Klein, R. Y. Moore, S. M. Reppert. Oxford Univ. Press, New York 1991; 309–323
  • Chen S., Wang Q. L., Nie Z., Sun H., Lennon G., Copeland N. G., Gilbert D. J., Jenkins N. A., Zack D. J. Crx, a novel Otx‐like paired‐homeodomain protein, binds to and transactivates photoreceptor cell‐specific genes. Neuron 1997; 19: 1017–1030
  • Collin J. P. Differentiation and regression of the cells of the sensory line in the epiphysis cerebri. The Pineal Gland, G. E.W. Wolstenholme, J. Knight. Churchill‐Livingstone, Edinburgh 1971; 79–125
  • Collin J. P., Oksche A. Structural and functional relationships in the nonmammalian pineal organ. The Pineal Gland: Vol. 1. Anatomy and Biochemistry, R. J. Reiter. CRC Press, Boca Raton, FL 1981; 27–67
  • Coon S. L., Klein D. C. Evolution of arylolkylavecate N‐acetyltransferase: Emergence and divergence. Molecular and Cellular Endocronology 2006, (in press)
  • Coon S. L., Roseboom P. H., Baler R., Weller J. L., Namboodiri M. A., Koonin E. V., Klein D. C. Pineal serotonin N‐acetyltransferase: expression cloning and molecular analysis. Science 1995; 270: 1681–1683
  • Coon S. L., Mazuruk K., Bernard M., Roseboom P. H., Klein D. C., Rodriguez I. R. The human serotonin N‐acetyltransferase (EC 2.3.1.87) gene (AANAT): Structure, chromosomal localization, and tissue expression. Genomics 1996; 34: 76–84
  • Coon S. L., Begay V., Deurloo D., Falcon J., Klein D. C. Two arylalkylamine N‐acetyltransferase genes mediate melatonin synthesis in fish. J. Biol. Chem. 1999; 274: 9076–9082
  • Coon S. L., Del Olmo E., Young W. S., 3rd, Klein D. C. Melatonin synthesis enzymes in Macaca mulatta: focus on arylalkylamine N‐acetyltransferase (EC 2.3.1.87). J. Clin. Endocrinol Metab. 2002; 87: 4699–4706
  • Craft C. M., Murage J., Brown B., Zhan‐Poe X. Bovine arylalkylamine N‐acetyltransferase activity correlated with mRNA expression in pineal and retina. Brain Res. Mol. Brain Res. 1999; 65: 44–51
  • Dodt E. Photosensitivity of the pineal organ in the teleoxt, Salmo irideus (Gibbons). Experientia 1963; 19: 642–643
  • Dodt E., Meissl H. The pineal and parietal organs of lower vertebrates. Experientia 1982; 38: 996–1000
  • Donoso L. A., Merryman C. F., Edelberg K., Naids R., Kalsow C. S‐antigen in the developing retina and pineal gland. Invest. Ophthalmol. Vis. Sci. 1985; 26: 561–567
  • Dubocovich M. L., Rivera‐Bermudez M. A., Gerdin M. J., Masana M. I. Molecular pharmacology, regulation and function of mammalian melatonin receptors. Front. Biosci. 2003; 8: 1093–108
  • Eakin R. M. The Third Eye. University of California Press, Berkeley 1973
  • Ekström P., Meissl H. Evolution of photosensory pineal organs in new light: The fate of neuroendocrine photoreceptors. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2003; 358: 1679–1700
  • Falcon J. Cellular circadian clocks in the pineal. Prog. Neurobiol. 1999; 58: 121–162
  • Falcon J., Marmillon J. B., Claustrat B., Collin J. P. Regulation of melatonin secretion in a photoreceptive pineal organ: an in vitro study in the pike. J. Neurosci. 1989; 6: 1943–1950
  • Falcon J., Gothilf Y., Coon S. L., Boeuf G., Klein D. C. Genetic, temporal and developmental differences between melatonin rhythm generating systems in the teleost fish pineal organ and retina. J. Neuroendocrinol. 2003; 15: 378–82
  • Ferry G., Loynel A., Kucharczyk N., Bertin S., Rodriguez M., Delagrange P., Galizzi J. P., Jacoby E., Volland J. P., Lesieur D., Renard P., Canet E., Fauchere J. L., Boutin J. A. Substrate specificity and inhibition studies of human serotonin N‐acetyltransferase. J. Biol. Chem. 2000; 275: 8794–805
  • Ferry G., Ubeaud C., Dauly C., Mozo J., Guillard S., Berger S., Jimenez S., Scoul C., Leclerc G., Yous S., Delagrange P., Boutin J. A. Purification of the recombinant human serotonin N‐acetyltransferase (EC 2.3.1.87): further characterization of and comparison with AANAT from other species. Protein Expr. Purif. 2004; 38: 84–98
  • Furukawa T., Morrow E. M., Li T., Davis F. C., Cepko C. L. Retinopathy and attenuated circadian entrainment in Crx‐deficient mice. Nat. Genet. 1999; 23: 466–470
  • Gamse J. T., Shen Y. C., Thisse C., Thisse B., Raymond P. A., Halpern M. E., Liang J. O. Otx5 regulates genes that show circadian expression in the zebrafish pineal complex. Nat. Genet. 2002; 30: 117–121
  • Ganguly S., Gastel J. A., Weller J. L., Schwartz C., Jaffe H., Namboodiri M. A., Coon S. L., Hickman A. B., Rollag M., Obsil T., Beauverger P., Ferry G., Boutin J. A., Klein D. C. Role of a pineal cAMP‐operated arylalkylamine N‐acetyltransferase/14‐3‐3‐binding switch in melatonin synthesis. Proc. Natl. Acad. Sci. USA. 2001; 98: 8083–8088
  • Ganguly S., Coon S. L., Klein D. C. Control of melatonin synthesis in the mammalian pineal gland: the critical role of serotonin acetylation. Cell Tissue Res. 2002; 309: 127–137
  • Ganguly S., Weller J. L., Hom A., Chemineau P., Malpaux B., Klein D. C. Melatonin synthesis: 14‐3‐3‐dependent activation and inhibition of arylalkylamine N‐acetyltransferase mediated by phosphoserine‐205. Proc. Natl. Acad. Sci. USA. 2005; 102: 1222–1227
  • Gern W. A., Ralph C. L. Melatonin synthesis by the retina. Science 1979; 204: 183–184
  • Goodwin L. G., Richards W. H.G., Udall V. The toxicity of diaminodiphenoxyalkanes. Br. J. Pharmacol. Chemother. 1957; 12: 468–474
  • Hamm H. E., Takahashi J. S., Menaker M. Light‐induced decrease of serotonin N‐acetyltransferase activity and melatonin in the chicken pineal gland and retina. Brain Res. 1983; 266: 287–293
  • Hardeland R., Poeggeler B. Non‐vertebrate melatonin. J. Pineal Res. 2003; 34: 233–240
  • Hein D. W. N‐Acetyltransferase genetics and their role in predisposition to aromatic and heterocyclic amine‐induced carcinogenesis. Toxicol. Lett. 2000; 15: 349–356
  • Hein D., McQueen C., Grant D., Goodfellow G., Kadlubar F., Weber W. Pharmacogenetics of the arylamine N‐acetyltransferases: a symposium in honor of Wendell W. Weber. Drug Metab. Dispos. 2000; 28: 1425–1432
  • Horie T., Orii H., Nakagawa M. Structure of ocellus photoreceptors in the ascidian Ciona intestinalis larva as revealed by an anti‐arrestin antibody. J. Neurobiol. 2005; 65: 241–250
  • Inada K., Horie T., Kusakabe T., Tsuda M. Targeted knockdown of an opsin gene inhibits the swimming behaviour photoresponse of ascidian larvae. Neurosci Lett. 2003; 34: 167–170
  • Iuvone P. M., Tosini G., Pozdeyev N., Haque R., Klein D. C., Chaurasia S. S. Circadian clocks, clock networks, arylalkylamine N‐acetyltransferase, and melatonin in the retina. Prog. Retin. Eye Res. 2005; 24: 433–456
  • Iyer L. M., Aravind L., Coon S. L., Klein D. C., Koonin E. V. Evolution of cell‐cell signaling in animals: did late horizontal gene transferfrom bacteria have a role?. Trends Genet. 2004; 20: 292–299
  • Jakobiec F. A., Tso M. O.M., Zimmerman L. E., Danis P. Retinoblastoma and intracranial malignancy. Cancer 1977; 39: 2048–2058
  • Jangir O. P., Suthar P., Shekhawat D. V., Acharya P., Swami K. K., Sharma M. The “third eye”–a new concept of trans‐differentiation of pineal gland into median eye in amphibian tadpoles of Bufo melanostictus. Indian J. Exp. Biol. 2005; 43: 671–678
  • Kalsow C. M., Wacker W. B. Pineal reactivity of anti‐retina sera. Invest. Ophthalmol. Vis. Sci. 1977; 16: 181–184
  • Kalsow C. M., Wacker W. B. Pineal gland involvement in retina‐induced experimental allergic uveitis. Invest. Ophthalmol. Vis. Sci. 1978; 17: 774–783
  • Kilbane A. J., Petroff T., Weber W. W. Kinetics of acetyl CoA: arylamine N‐acetyltransferase from rapid and slow acetylator human liver. Drug Metab. Dispos. 1991; 19: 503–507
  • Klein D. C. The melatonin rhythm generating system. Developmental aspects. Karger Press, Basel 1982
  • Klein D. C. Photoneural regulation of the mammalian pineal gland. Photoperiodism, Melatonin and the Pineal. Pitman, D. Evered, S. Clark. (Ciba Foundation Symposium 117), London 1985; 38–56
  • Klein D. C. The (2004) Aschoff/Pittendrigh lecture: Theory of the origin of the pineal gland: a tale of conflict and resolution. J. Biol. Rhythms 2004; 19: 264–279
  • Klein D. C., Coon S. L. The melatonin rhythm enzyme in the retina: A detoxification role. Ann. Rev. Pharmacol. Tox. 2006, (in press)
  • Klein D. C., Moore R. Y. Pineal N‐acetyltransferase and hydroxyindole‐O‐methyltransferase: control by the retinohypothalamic tract and the suprachiasmatic nucleus. Brain Res. 1979; 174: 245–262
  • Klein D. C., Weller J. L. Rapid light‐induced decrease in pineal serotonin N‐acetyltransferase activity. Science 1972; 177: 532–533
  • Klein D. C., Moore R. Y., Reppert S. M. Suprachiasmatic Nucleus: The Mind's Clock. Oxford Univ. Press, New York 1991
  • Klein D. C., Coon S. L., Roseboom P. H., Weller J. L., Bernard M., Gastel J. A., Zatz M., Iuvone P. M., Rodriguez I. R., Begay V., Falcon J., Cahill G. M., Cassone V. M., Baler R. The melatonin rhythm‐generating enzyme: molecular regulation of serotonin N‐acetyltransferase in the pineal gland. Recent Prog. Horm. Res. 1997; 52: 307–357
  • Klein D. C., Baler R., Roseboom P. H., Weller J. L., Bernard M., Gastel J. A., Zatz M., Iuvone P. M., Begáy V., Falcón J., Cahill G., Cassone V. M., Coon S. L. The molecular basis of the pineal melatonin rhythm: Regulation of serotonin N‐acetylation. Handbook of Behavioral State Control: Cellular and Molecular Mechanisms, R. Lydic, H. Baghdoyan. CRC Press, Boca Raton 1998; 45–59
  • Klein D. C., Ganguly S., Coon S., Weller J. L., Obsil T., Hickman A., Dyda F. 14‐3‐3 Proteins and photoneuroendocrine transduction: role in controlling the daily rhythm in melatonin. Biochem. Soc. Trans. 2002; 30: 365–373
  • Klein D. C., Ganguly S., Coon S. L., Shi Q., Gaildrat P., Morin F., Weller J. L., Obsil T., Hickman A., Dyda F. 14‐3‐3 proteins in pineal photoneuroendocrine transduction: how many roles?. J. Neuroendocrinol. 2003; 15: 370–377
  • Kojima D., Fukada Y. Non‐visual photoreception by a variety of vertebrate opsins. Novartis Found. Symp. 1999; 224: 265–279
  • Korf H. W., Møller M., Gery I., Zigler J. S., Klein D. C. Immunocytochemical demonstration of retinal S‐antigen in the pineal organ of four mammalian species. Cell Tissue Res. 1985; 239: 81–85
  • Korf H. W., Korf B., Schachenmayr W., Chader G. J., Wiggert B. Immunocytochemical demonstration of interphotoreceptor retinoid‐binding protein in cerebellar medulloblastoma. Acta Neuropathol (Berl) 1992a; 83: 482–487
  • Korf H. W., White B. H., Schaad N. C., Klein D. C. Recoverin in pineal organs and retina of various vertebrate species including man. Brain Res. 1992b; 595: 57–66
  • Kusakabe T., Kusakabe R., Kawakami I., Satou Y., Satoh N., Tsuda M. Ci‐opsin1, a vertebrate‐type opsin gene, expressed in the larval ocellus of the ascidian Ciona intestinalis. FEBS Lett. 2001; 506: 69–72
  • Mano H., Kojima D., Fukada Y. Exo‐rhodopsin: a novel rhodopsin expressed in the zebrafish pineal gland. Mol. Brain Res. 1999; 73: 110–118
  • Max M., McKinnon P. J., Seidenman K. J., Barrett R. K., Applebury M. L., Takahashi J. S., Margolskee R. F. Pineal opsin: a nonvisual opsin expressed in chick pineal. Science 1995; 267: 1502–1506
  • Mirshahi M., Boucheix C., Collenot G., Thillaye B., Faure J. P. Retinal S‐antigen epitopes in vertebrate and invertebrate photoreceptors. Invest. Ophthalmol. Vis. Sci. 1985; 26: 1016–1021
  • Moore R. Y., Klein D. C. Visual pathways and the central neural control of a circadian rhythm in pineal serotonin N‐acetyltransferase activity. Brain Res. 1974; 71: 17–33
  • Morita Y., Dodt E. Early receptor potential from the pineal photoreceptor. Pflugers Arch. 1975; 354: 273–80
  • Mouratova T. Trilateral retinoblastoma: a literature review, 1971‐2004. Bull. Soc. Belge Ophthalmol. 2005; 297: 25–35
  • Nishida A., Furukawa A., Koike C., Tano Y., Aizawa S., Matsuo I., Furukawa T. Otx2 homeobox gene controls retinal photoreceptor cell fate and pineal gland development. Nat. Neurosci. 2003; 6: 1255–1263
  • O'Brien P. J., Klein D. C. Pineal and Retinal Relationships. Academic Press, Orlando 1986
  • Okano T., Yoshizawa T., Fukada Y. Pinopsin is a chicken pineal photoreceptive molecule. Nature 1994; 372: 94–97
  • Pratt B. L., Takahashi J. S. Alpha‐2 adrenergic regulation of melatonin release in chick pineal cell cultures. J. Neurosci. 1987; 7: 3665–3674
  • Reig J. A., Yu L., Klein D. C. Pineal transduction. Adrenergic→cyclic AMP‐dependent phosphorylation of cytoplasmic 33‐kDa protein (MEKA) which binds beta gamma‐complex of transducin. J. Biol. Chem. 1990; 265: 5816–5824
  • Reppert S. M. Melatonin receptors: molecular biology of a new family of G protein‐coupled receptors. J. Biol. Rhythms 1997; 12: 528–531
  • Rodrigues M. M., Hackett J., Gaskins R., Wiggert B., Lee L., Redmond M., Chader G. J. Interphotoreceptor retinoid‐binding protein in retinal rod cells and pineal gland. Invest. Ophthalmol. Vis. Sci. 1986; 27: 844–850
  • Rodriguez I. R., Mazuruk K., Schoen T. J., Chader G. J. Structural analysis of the human hydroxyindole‐O‐methyltransferase gene. Presence of two distinct promoters. J. Biol. Chem. 1994; 269: 31969–31977
  • Rosner J. M., Declercq de Perez Bed O., Cardinali D. P. Direct effect of light on duck pineal explants. Life Sci II. 1971; 10: 1065–1069
  • Rubenstedt J. L. Images in neuroscience. Brain development I. The neural plate. Am. J. Psychiatry 1998; 155: 3–24
  • Schaad N. C., Shinohara T., Abe T., Klein D. C. Photoneural control of the synthesis and phosphorylation of pineal MEKA (phosducin). Endocrinology 1991; 129: 3289–3298
  • Shimauchi Y., Yahata T., Matsubara S., Araki M. Role of tissue interaction between pineal primordium and neighboring tissues in avian pineal morphogenesis studied by intraocular transplantation. Dev. Genes Evol. 2002; 212: 319–329
  • Somers R. L., Klein D. C. Rhodopsin kinase activity in the mammalian pineal gland and other tissues. Science. 1984; 12: 182–184
  • Sparrow J. R., Nakanishi K., Parish C. A. The lipofuscin fluorophore A2E mediates blue light‐induced damage to retinal pigment epithelial cells. Invest. Ophthalmol. Vis. Sci. 2000; 41: 1981–1989
  • Sparrow J. R., Vollmer‐Snarr H. R., Zhou J., Jang Y. P., Jockusch S., Itagaki Y., Nakanishi K. A2E‐epoxides damage DNA in retinal pigment epithelial cells: Vitamin E and other antioxidants inhibit A2E‐epoxide formation. J. Biol. Chem. 2003; 278: 18207–18213
  • Sugden D., Davidson K., Hough K. A., The M. T. Melatonin, melatonin receptors and melanophores: a moving story. Pigment Cell Res. 2004; 17: 454–460
  • Tosini G., Doyle S., Geusz M., Menaker M. Induction of photosensitivity in neonatal rat pineal gland. Proc. Natl. Acad. Sci. 2000; 97: 11540–11544
  • van Veen T., Katial A., Shinohara T., Barrett D. J., Wiggert B., Chader G. J., Nickerson J. M. Retinal photoreceptor neurons and pinealocytes accumulate mRNA for interphotoreceptor retinoid‐binding protein (IRBP). FEBS Lett. 1986a; 208: 133–137
  • van Veen T., Ostholm T., Gierschik P., Spiegel A., Somers R., Korf H. W., Klein D. C. α‐transducin immunoreactivity in retinae and sensory pineal organs of adult vertebrates. Proc. Natl. Acad. Sci. USA 1986b; 83: 912–916
  • van Veen T., Elofsson R., Hartwig H. G., Gery I., Mochizuki M., Cena V., Klein D. C. Retinal S‐antigen: immunocytochemical and immunochemical studies on distribution in animal photoreceptors and pineal organs. Exp. Biol. 1986c; 45: 15–25
  • Voisin P., Namboodiri M. A., Klein D. C. Arylamine N‐acetyltransferase and arylalkylamine N‐acetyltransferase in the mammalian pineal gland. J. Biol. Chem. 1984; 259: 10913–10918
  • Wainwright S. D., Wainwright L. K. Chick pineal serotonin acetyltransferase: a diurnal cycle maintained in vitro and its regulation by light. Can. J. Biochem. 1979; 57: 700–709
  • Weber W. W. Acetylating, deacetylating and amino acid conjugating enzyme. Handbook of Experimental Pharmacology, B. B. Brodie, J. R. Gillete, 1971; XXVII: 564–583, Pt. 2
  • Weber W. W. Acetylation of drugs. Metabolic conjugation and Metabolic Hydrolysis III, W. H. Fishman. Academic Press, New York 1973; 249–296
  • Weber W. W. The acetylator genes and drug response. Oxford University Press, New York 1987
  • Wiechmann A. F. Localization of hydroxyindole‐O‐methyltransferase in the retina: a re‐evaluation. Exp. Eye Res. 1993; 57: 379–380
  • Zatz M. Relationship between light, calcium influx and cAMP in the acute regulation of melatonin production by cultured chick pineal cells. Brain Res. 1989; 477: 14–18
  • Zatz M., Mullen D. A., Moskal J. R. Photoendocrine transduction in cultured chick pineal cells: effects of light, dark, and potassium on the melatonin rhythm. Brain Res. 1988; 438: 199–215
  • Zimmerman B. L., Tso M. O. Morphologic evidence of photoreceptor differentiation of pinealocytes in the neonatal rat. J. Cell Biol. 1975; 66: 60–75

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.