380
Views
22
CrossRef citations to date
0
Altmetric
Original

Light‐evoked FOS induction within the suprachiasmatic nuclei (SCN) of melanopsin knockout (Opn4−/−) mice: A developmental study

, , , &
Pages 167-179 | Published online: 07 Jul 2009

References

  • Aggelopoulus N. C., Meissl H. Responses of neurones of the rat suprachiasmatic nucleus to retinal illumination under photopic and scotopic conditions. J. Physiol. 2000; 523: 211–222
  • Aronin N., Sagar S. M., Sharp F. R., Schwartz W. J. Light regulates expression of a fos‐related protein in rat suprachiasmatic nuclei. Proc. Natl. Acad. Sci. USA. 1990; 87: 5959–5962
  • Berson D. M., Dunn F. A., Takao M. Phototransduction by retinal ganglion cells that set the circadian clock. Science 2002; 295: 1070–1073
  • Bibb L. C., Holt J. K., Tarttelin E. E., Hodges M. D., Gregory‐Evans K., Rutherford A., Lucas R. J., Sowden J. C., Gregory‐Evans C. Y. Temporal and spatial expression patterns of the CRX transcription factor and its downstream targets. Critical differences during human and mouse eye development. Hum. Mol. Genet. 2001; 10: 1571–1579
  • Carter‐Dawson L., Alvarez R. A., Fong S. L., Liou G. I., Sperling H. G., Bridges C. D. Rhodopsin, 11‐cis vitamin A, and interstitial retinol‐binding protein (IRBP) during retinal development in normal and rd mutant mice. Dev. Biol. 1986; 116: 431–438
  • Cepko C. L., Austin C. P., Yang X., Alexiades M., Ezzeddine D. Cell fate determination in the vertebrate retina. Proc. Natl. Acad. Sci. USA. 1996; 93: 589–595
  • Dacey D. M., Liao H. W., Peterson B. B., Robinson F. R., Smith V. C., Pokorny J., Yau K. W., Gamlin P. D. Melanopsin‐expressing ganglion cells in primate retina signal colour and irradiance and project to the LGN. Nature 2005; 433: 749–754
  • Drager U. C. Birth dates of retinal ganglion cells giving rise to the crossed and uncrossed optic projections in the mouse. Proc. R. Soc. Lond. B Biol. Sci. 1985; 224: 57–77
  • Duncan M. J., Banister M. J., Reppert S. M. Developmental appearance of light‐dark entrainment in the rat. Brain Res. 1986; 369: 326–330
  • Fei Y. Development of the cone photoreceptor mosaic in the mouse retina revealed by fluorescent cones in transgenic mice. Mol. Vis. 2003; 9: 31–42
  • Foster R. G. Shedding light on the biological clock. Neuron 1998; 20: 829–832
  • Foster R. G. Neurobiology: bright blue times. Nature 2005; 433: 698–699
  • Foster R. G., Bellingham J. Opsins and melanopsins. Curr. Biol. 2002; 12: 543–544
  • Foster R. G., Argamaso S., Coleman S., Colwell C. S., Lederman A., Provencio I. Photoreceptors regulating circadian behavior: A mouse model. J. Biol. Rhythms 1993; 8: 17–23
  • Foster R. G., Provencio I., Hudson D., Fiske S., DeGrip W., Menaker M. Circadian photoreception in the retinally degenerate mouse (rd/rd). J. Comp. Physiol. [A] 1991; 169: 39–50
  • Foster R. G., Hankins M., Lucas R. J., Jenkins A., Munoz M., Thompson S., Appleford J. M., Bellingham J. Non‐rod, non‐cone photoreception in rodents and teleost fish. Novartis Found. Symp. 2003; 253: 3–23; discussion 23–30; 52–25; 102–109
  • Freedman M. S., Lucas R. J., Soni B., von Schantz M., Munoz M., David‐Gray Z. K., Foster R. G. Regulation of mammalian circadian behavior by non‐rod, non‐cone, ocular photoreceptors. Science 1999; 284: 502–504
  • Gooley J. J., Lu J., Fischer D., Saper C. B. A broad role for melanopsin in nonvisual photoreception. J. Neurosci. 2003; 23: 7093–7106
  • Hannibal J., Fahrenkrug J. Melanopsin containing retinal ganglion cells are light responsive from birth. Neuroreport 2004; 15: 2317–2320
  • Hao H., Rivkees S. A. The biological clock of very premature primate infants is responsive to light. Proc. Natl. Acad. Sci. USA. 1999; 96: 2426–2429
  • Hattar S., Liao H. W., Takao M., Berson D. M., Yau K. W. Melanopsin‐containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science 2002; 295: 1065–1070
  • Hattar S., Lucas R. J., Mrosovsky N., Thompson S., Douglas R. H., Hankins M. W., Lem J., Biel M., Hofmann F., Foster R. G., Yau K. W. Melanopsin and rod‐cone photoreceptive systems account for all major accessory visual functions in mice. Nature 2003; 424: 75–81
  • Lucas R. J., Foster R. G. Circadian Clocks: A cry in the dark?. Curr. Biol. 1999; 9: 825–828
  • Lucas R. J., Freedman M. S., Munoz M., Garcia‐Fernandez J. M., Foster R. G. Regulation of the mammalian pineal by non‐rod, non‐cone, ocular photoreceptors. Science 1999; 284: 505–507
  • Lucas R. J., Douglas R. H., Foster R. G. Characterization of an ocular photopigment capable of driving pupillary constriction in mice. Nat. Neurosci. 2001; 4: 621–626
  • Lucas R. J., Hattar S., Takao M., Berson D. M., Foster R. G., Yau K. W. Diminished pupillary light reflex at high irradiances in melanopsin‐knockout mice. Science 2003; 299: 245–247
  • Lupi D., Chounlamountri N., Cooper H. M. Development of the retinohypothalamic afferents in mice. Eur. J. Neurosci. 2000; 12(Suppl. 11)186–115
  • Mann N. P., Haddow R., Stokes L., Goodley S., Rutter N. Effect of night and day on preterm infants in a newborn nursery: randomised trial. Br. Med. J. (Clin. Res. Ed.) 1986; 293: 1265–1267
  • Melyan Z., Tarttelin E. E., Bellingham J., Lucas R. J., Hankins M. W. Addition of human melanopsin renders mammalian cells photoresponsive. Nature 2005; 433: 741–745
  • Munoz Llamosas M., Huerta J. J., Cernuda‐Cernuda R., Garcia‐Fernandez J. M. Ontogeny of a photic response in the retina and suprachiasmatic nucleus in the mouse. Brain. Res. Dev. Brain Res. 2000; 120: 1–6
  • Nelson R. J., Zucker I. Absence of extraocular photoreception in diurnal and nocturnal rodents exposed to direct sunlight. Comp. Biochem. Physiol. A 1981; 69: 145–148
  • Newman L. A., Walker M. T., Brown R. L., Cronin T. W., Robinson P. R. Melanopsin forms a functional short‐wavelength photopigment. Biochem. 2003; 42: 12734–12738
  • Olney J. W. An electron microscopic study of synapse formation, receptor outer segment development, and other aspects of developing mouse retina. Investe Ophthalmol. Vis. Sci. 1968; 7: 250–268
  • Panda S., Sato T. K., Castrucci A. M., Rollag M. D., DeGrip W. J., Hogenesch J. B., Provencio I., Kay S. A. Melanopsin (Opn4) requirement for normal light‐induced circadian phase shifting. Science 2002; 298: 2213–2216
  • Panda S., Provencio I., Tu D. C., Pires S. S., Rollag M. D., Castrucci A. M., Pletcher M. T., Sato T. K., Wiltshire T., Andahazy M., Kay S. A., Van Gelder R. N., Hogenesch J. B. Melanopsin is required for non‐image‐forming photic responses in blind mice. Science 2003; 301: 525–527
  • Panda S., Nayak S. K., Campo B., Walker J. R., Hogenesch J. B., Jegla T. Illumination of the melanopsin signaling pathway. Science 2005; 307: 600–604
  • Provencio I., Cooper H. M., Foster R. G. Retinal projections in mice with inherited retinal degeneration: implications for circadian photoentrainment. J. Comp. Neurol. 1998; 395: 417–439
  • Qiu X., Kumbalasiri T., Carlson S. M., Wong K. Y., Krishna V., Provencio I., Berson D. M. Induction of photosensitivity by heterologous expression of melanopsin. Nature 2005; 433: 745–749
  • Ratto G. M., Robinson D. W., Yan B., McNaughton P. A. Development of the light response in neonatal mammalian rods. Nature 1991; 351: 654–657
  • Reppert S. M., Schwartz W. J. Maternal coordination of the fetal biological clock in utero. Science 1983; 220: 969–971
  • Reppert S. M., Schwartz W. J. Maternal suprachiasmatic nuclei are necessary for maternal coordination of the developing circadian system. J. Neurosci. 1986; 6: 2724–2729
  • Reppert S. M., Duncan M. J., Goldman B. D. Photic influences on the developing mammal. Ciba Found. Symp. 1985; 117: 116–128
  • Reppert S. M., Weaver D. R., Rivkees S. A. Maternal communication of circadian phase to the developing mammal. Psychoneuroendocrinol 1988; 13: 63–78
  • Rieux C., Carney R., Lupi D., Dkhissi‐Benyahya O., Jansen K., Chounlamountri N., Foster R. G., Cooper H. M. Analysis of immunohistochemical label of Fos protein in the suprachiasmatic nucleus: comparison of different methods of quantification. J. Biol. Rhythms 2002; 17: 121–136
  • Ruby N. F., Brennan T. J., Xie X., Cao V., Franken P., Heller H. C., O'Hara B. F. Role of melanopsin in circadian responses to light. Science 2002; 298: 2211–2213
  • Sekaran S., Foster R. G., Lucas R. J., Hankins M. W. Calcium imaging reveals a network of intrinsically light‐sensitive inner‐retinal neurons. Curr. Biol. 2003; 13: 1290–1298
  • Sekaran S., Lupi D., Jones S. L., Sheely C. J., Hattar S., Yau K. W., Lucas R. J., Foster R. G., Hankins M. W. Melanopsin‐dependent photoreception provides earliest light detection in the mammalian retina. Curr. Biol. 2005; 15: 1099–1107
  • Semo M., Peirson S., Lupi D., Lucas R. J., Jeffery G., Foster R. G. Melanopsin retinal ganglion cells and the maintenance of circadian and pupillary responses to light in aged rodless/coneless (rd/rd cl) mice. Eur. J. Neurosci. 2003; 17: 1793–1801
  • Speh J. C., Moore R. Y. Retinohypothalamic tract development in the hamster and rat. Brain Res. Dev. Brain Res. 1993; 76: 171–181
  • Tarttelin E. E., Bellingham J., Bibb L. C., Foster R. G., Hankins M. W., Gregory‐Evans K., Gregory‐Evans C. Y., Wells D. J., Lucas R. J. Expression of opsin genes early in ocular development of humans and mice. Exp. Eye Res. 2003; 76: 393–396
  • Tian N., Copenhagen D. R. Visual stimulation is required for refinement of ON and OFF pathways in postnatal retina. Neuron 2003; 39: 85–96
  • Touitou Y., Portaluppi F., Smolensky M. H., Rensing L. Ethical principles and standards for the conduct of human and animal biological rhythm research. Chronobiol. Int. 2004; 21: 161–170
  • Weaver D. R., Reppert S. M. Maternal‐fetal communication of circadian phase in a precocious rodent, the spiny mouse. Am. J. Physiol. 1987; 253: E401–409
  • Weaver D. R., Reppert S. M. Direct in utero perception of light by the mammalian fetus. Brain Res. Dev. Brain Res. 1989; 47: 151–155
  • Young R. W. Cell differentiation in the retina of the mouse. Anat. Rec. 1985; 212: 199–205

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.