320
Views
38
CrossRef citations to date
0
Altmetric
Review

Hypocretins: The Timing of Sleep and Waking

&
Pages 63-70 | Published online: 07 Jul 2009

References

  • Abe H., Honma S., Ohtsu H., Honma K. Circadian rhythms in behavior and clock gene expressions in the brain of mice lacking histidine decarboxylase. Brain Res. Mol. Brain Res. 2004; 124: 178–187
  • Abrahamson E. E., Leak R. K., Moore R. Y. The suprachiasmatic nucleus projects to posterior hypothalamic arousal systems. Neuroreport 2001; 12: 435–440
  • Bayer L., Serafin M., Eggermann E., Saint‐Mleux B., Machard D., Jones B. E., Muhlethaler M. Exclusive postsynaptic action of hypocretin‐orexin on sublayer 6b cortical neurons. J. Neurosci. 2004; 24: 6760–6764
  • Brown R. E., Sergeeva O. A., Eriksson K. S., Haas H. L. Convergent excitation of dorsal raphe serotonin neurons by multiple arousal systems (orexin/hypocretin, histamine and noradrenaline). J. Neurosci. 2002; 22: 8850–8859
  • Buijs R. M., Kalsbeek A. Hypothalamic integration of central and peripheral clocks. Nat. Rev. Neurosci. 2001; 2: 521–526
  • Burlet S., Tyler C. J., Leonard C. S. Direct and indirect excitation of laterodorsal tegmental neurons by hypocretin/orexin peptides: implications for wakefulness and narcolepsy. J. Neurosci. 2002; 22: 2862–2872
  • Date Y., Ueta Y., Yamashita H., Yamaguchi H., Matsukura S., Kangawa K., Sakurai T., Yanagisawa M., Nakazato M. Orexins, orexigenic hypothalamic peptides, interact with autonomic, neuroendocrine and neuroregulatory systems. Proc. Natl. Acad. Sci. USA. 1999; 96: 748–753
  • De Lecea L., Kilduff T. S., Peyron C., Gao X., Foye P. E., Danielson P. E., Fukuhara C., Battenberg E. L., Gautvik V. T., Bartlett F. S., Frankel W. N., van den Pol A. N., Bloom F. E., Gautvik K. M., Sutcliffe J. G. The hypocretins: Hypothalamus‐specific peptides with neuroexcitatory activity. Proc. Natl. Acad. Sci. USA. 1998; 95: 322–327
  • Deurveilher S., Semba K. Indirect projections from the suprachiasmatic nucleus to major arousal‐promoting cell groups in rat: Implications for the circadian control of behavioural state. Neuroscience 2005; 130: 165–183
  • Eriksson K. S., Sergeeva O., Brown R. E., Haas H. L. Orexin/hypocretin excites the histaminergic neurons of the tuberomammillary nucleus. J. Neurosci. 2001; 21: 9273–9279
  • Eriksson K. S., Sergeeva O. A., Selbach O., Haas H. L. Orexin (hypocretin)/dynorphin neurons control GABAergic inputs to tuberomammillary neurons. Eur. J. Neurosci. 2004; 19: 1278–1284
  • Fabris C., Cozzi B., Hay‐Schmidt A., Naver B., Moller M. Demonstration of an orexinergic central innervation of the pineal gland of the pig. J. Comp. Neurol. 2004; 471: 113–127
  • Farkas B., Vilagi I., Detari L. Effect of orexin‐A on discharge rate of rat suprachiasmatic nucleus neurons in vitro. Acta Biol. Hung. 2002; 53: 435–443
  • Haas H. L., Panula P. The role of histamine and the tuberomamillary nucleus in the nervous system. Nat. Rev. Neurosci. 2003; 4: 121–130
  • Hagan J. J., Leslie R. A., Patel S., Evans M. L., Wattam T. A., Holmes S., Benham C. D., Taylor S. G., Routledge C., Hemmati P., Munton R. P., Ashmeade T. E., Shah A. S., Hatcher J. P., Hatcher P. D., Jones D. N., Smith M. I., Piper D. C., Hunter A. J., Porter R. A., Upton N. Orexin A activates locus coeruleus cell firing and increases arousal in the rat. Proc. Natl. Acad. Sci. USA. 1999; 96: 10911–10916
  • Harris G. C., Wimmer M., Aston‐Jones G. A role for lateral hypothalamic orexin neurons in reward seeking. Nature 2005; 437: 556–559
  • Hastings M. H., Reddy A. B., Maywood E. S. A clockwork web: circadian timing in brain and periphery, in health and disease. Nat. Rev. Neurosci. 2003; 4: 649–661
  • Horvath T. L., Gao X. B. Input organization and plasticity of hypocretin neurons: Possible clues to obesity's association with insomnia. Cell. Metab. 2005; 1: 279–286
  • Huang Z. L., Qu W. M., Li W. D., Mochizuki T., Eguchi N., Watanabe T., Urade Y., Hayaishi O. Arousal effect of orexin A depends on activation of the histaminergic system. Proc. Natl. Acad. Sci. USA. 2001; 98: 9965–9970
  • Huston J. P., Haas H. L., Boix F., Pfister M., Decking U., Schrader J., Schwarting R. K. Extracellular adenosine levels in neostriatum and hippocampus during rest and activity periods of rats. Neuroscience 1996; 73: 99–107
  • Korotkova T. M., Sergeeva O. A., Eriksson K. S., Haas H. L., Brown R. E. Excitation of ventral tegmental area dopaminergic and nondopaminergic neurons by orexins/hypocretins. J. Neurosci. 2003; 23: 7–11
  • Krout K. E., Mettenleiter T. C., Karpitskiy V., Van N. X., Loewy A. D. CNS neurons with links to both mood‐related cortex and sympathetic nervous system. Brain Res. 2005; 1050: 199–202
  • Kukkonen J. P., Holmqvist T., Ammoun S., Akerman K. E. Functions of the orexinergic/hypocretinergic system. Am. J. Physiol. Cell Physiol. 2002; 283: C1567–C1591
  • Lee M. G., Hassani O. K., Jones B. E. Discharge of identified orexin/hypocretin neurons across the sleep‐waking cycle. J. Neurosci. 2005; 25: 6716–6720
  • Li Y., Gao X. B., Sakurai T., van den Pol A. N. Hypocretin/Orexin excites hypocretin neurons via a local glutamate neuron‐A potential mechanism for orchestrating the hypothalamic arousal system. Neuron 2002; 36: 1169–1181
  • Mieda M., Williams S. C., Sinton C. M., Richardson J. A., Sakurai T., and Yanagisawa M. Orexin neurons function in an efferent pathway of a food‐entrainable circadian oscillator in eliciting food‐anticipatory activity and wakefulness. J. Neurosci. 2004; 24: 10493–10501
  • Mignot E., Taheri S., Nishino S. Sleeping with the hypothalamus: Emerging therapeutic targets for sleep disorders. Nat. Neurosci. 2002; 5(Suppl)1071–1075
  • Mikkelsen J. D., Hauser F., deLecea L., Sutcliffe J. G., Kilduff T. S., Calgari C., Pevet P., Simonneaux V. Hypocretin (orexin) in the rat pineal gland: A central transmitter with effects on noradrenaline‐induced release of melatonin. Eur. J. Neurosci. 2001; 14: 419–425
  • Mileykovskiy B. Y., Kiyashchenko L. I., Siegel J. M. Behavioral correlates of activity in identified hypocretin/orexin neurons. Neuron 2005; 46: 787–798
  • Mochizuki T., Crocker A., McCormack S., Yanagisawa M., Sakurai T., Scammell T. E. Behavioral state instability in orexin knock‐out mice. J. Neurosci. 2004; 24: 6291–6300
  • Murphy J. A., Deurveilher S., Semba K. Stimulant doses of caffeine induce c‐FOS activation in orexin/hypocretin‐containing neurons in rat. Neuroscience 2003; 121: 269–275
  • Paneda C., Winsky‐Sommerer R., Boutrel B., De Lecea L. The corticotropin‐releasing factor‐hypocretin connection: Implications in stress response and addition. Drug News Perspect. 2005; 18: 250–255
  • Parmentier R., Ohtsu H., Djebbara‐Hannas Z., Valatx J. L., Watanabe T., Lin J. S. Anatomical, physiological, and pharmacological characteristics of histidine decarboxylase knock‐out mice: Evidence for the role of brain histamine in behavioral and sleep‐wake control. J. Neurosci. 2002; 22: 7695–7711
  • Sakurai T. Orexin: A link between energy homeostasis and adaptive behaviour. Curr. Opin. Clin. Nutr. Metab. Care 2003; 6: 353–360
  • Saper C. B., Chou T. C., Scammell T. E. The sleep switch: Hypothalamic control of sleep and wakefulness. Trends Neurosci. 2001; 24: 726–731
  • Selbach O., Eriksson K. S., Haas H. L. Drugs to interfere with orexins (hypocretins). Drug News Perspect. 2003; 16: 669–681
  • Selbach O., Doreulee N., Bohla C., Eriksson K. S., Sergeeva O. A., Poelchen W., Brown R. E., Haas H. L. Orexins/hypocretins cause sharp wave‐ and theta‐related synaptic plasticity in the hippocampus via glutamatergic, gabaergic, noradrenergic, and cholinergic signaling. Neuroscience 2004; 127: 519–528
  • Sergeeva O. A., Andreeva N., Garret M., Scherer A., Haas H. L. Pharmacological properties of GABAA receptors in rat hypothalamic neurons expressing the epsilon‐subunit. J. Neurosci. 2005; 25: 88–95
  • Siegel J. M. Hypocretin (orexin): Role in normal behavior and neuropathology. Annu. Rev. Psychol. 2004; 55: 125–148
  • Spanagel R., Pendyala G., Abarca C., Zghoul T., Sanchis‐Segura C., Magnone M. C., Lascorz J., Depner M., Holzberg D., Soyka M., Schreiber S., Matsuda F., Lathrop M., Schumann G., Albrecht U. The clock gene Per2 influences the glutamatergic system and modulates alcohol consumption. Nat. Med. 2005; 11: 35–42
  • Steidl U., Bork S., Schaub S., Selbach O., Seres J., Aivado M., Schroeder T., Rohr U. P., Fenk R., Kliszewski S., Maercker C., Neubert P., Bornstein S. R., Haas H. L., Kobbe G., Tenen D. G., Haas R., Kronenwett R. Primary human CD34+ hematopoietic stem and progenitor cells express functionally active receptors of neuromediators. Blood 2004; 104: 81–88
  • Turek F. W., Joshu C., Kohsaka A., Lin E., Ivanova G., McDearmon E., Laposky A., Losee‐Olson S., Easton A., Jensen D. R., Eckel R. H., Takahashi J. S., Bass J. Obesity and metabolic syndrome in circadian clock mutant mice. Science 2005; 308: 1043–1045
  • Von Economo C. Sleep as a problem of localization. J. Nerv. Ment. Dis. 1930; 71: 249–259

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.