Publication Cover
Chronobiology International
The Journal of Biological and Medical Rhythm Research
Volume 23, 2006 - Issue 3
638
Views
60
CrossRef citations to date
0
Altmetric
Original

Light and Temperature Cycles as Zeitgebers of Zebrafish (Danio rerio) Circadian Activity Rhythms

, &
Pages 537-550 | Received 11 Nov 2005, Accepted 12 Jan 2006, Published online: 07 Jul 2009

References

  • Aranda A., Sánchez‐Vázquez F. J., Madrid J. A. Influence of water temperature on demand‐feeding rhythms in sea bass. J. Fish Biol. 1999; 55: 1029–1039
  • Barrett R. K., Takahashi J. S. Temperature compensation and temperature entrainment of the chick pineal cell circadian clock. J. Neurosci. 1995; 15: 5681–5692
  • Bolliet V., Bégay V., Ravault J. P., Ali M. A., Collin J. P., Falcón J. Multiple circadian oscillators in the photosensitive pike pineal gland: A study using organ and cell culture. J. Pineal Res. 1994; 16: 77–84
  • Cahill G. M. Circadian regulation of melatonin production in cultured zebrafish pineal and retina. Brain Res. 1996; 708: 177–181
  • Cahill G. M. Clock mechanisms in zebrafish. Cell Tissue Res. 2002; 309: 27–34
  • Cahill G. M., Hurd M. W., Batchelor M. M. Circadian rhythmicity in the locomotor activity of larval zebrafish. Neuroreport 1998; 9: 3445–3449
  • Davies B., Bromage N. The effects of fluctuating seasonal and constant water temperatures on the photoperiodic advancement of reproduction in female rainbow trout, Oncorhynchus mykiss. Aquaculture 2002; 205: 183–200
  • Dunlap J. C. Molecular bases for circadian clocks. Cell 1999; 96: 271–290
  • Evans K. J. Responses of the locomotor activity rhythms of lizards to simultaneous light and temperature cycles. Comp. Biochem. Physiol. 1966; 19: 91–103
  • Firth B. T., Belan I., Kennaway D. J., Moyer R. W. Thermocyclic entrainment of lizard blood plasma melatonin rhythms in constant and cyclic photic environments. Am. J. Physiol. Reg. Integr. Comp. Physiol. 1999; 277: R1620–R1626
  • García‐Allegue R., Madrid J. A., Sánchez‐Vázquez F. J. Melatonin rhythms in European sea bass plasma and eye: Influence of seasonal photoperiod and water temperature. J. Pineal Res. 2001; 31: 68–75
  • Hoffmann K. Die relative Wirksamkeit von Zeitgebern. Oecologia 1969; 3: 184–206
  • Hurd M. W., Cahill G. M. Entraining signals initiate behavioural circadian rhythmicity in larval zebrafish. J. Biol. Rhythm 2002; 17: 307–314
  • Hurd M. W., Debruyne J., Straume M., Cahill G. M. Circadian rhythms of locomotor activity in zebrafish. Physiol. Behav. 1998; 65: 465–472
  • Iigo M., Aida K. Effects of season, temperature and photoperiod on plasma melatonin rhythms in the goldfish, Carassius auratus. J. Pineal Res. 1995; 18: 62–68
  • Johnson C. H., Elliott J., Foster R., Honma K., Kronauer R. Fundamental properties of circadian rhythms. Chronobiology. Biological Timekeeping, J. C. Dunlap, J. J. Loros, P. J. DeCoursey. Sinauer Associates, Sunderland, MA 2004; 67–105
  • Kaneko M., Cahill G. M. Light‐dependent development of circadian gene expression in transgenic zebrafish. PLoS Biol. 2005; 3: 313–323
  • Kazimi N., Cahill G. M. Development of a circadian melatonin rhythm in embryonic zebrafish. Dev. Brain Res. 1999; 117: 47–52
  • Lahiri K., Vallone D., Gondi S. B., Santoriello C., Dickmeis T., Foulkes N. S. Temperature regulates transcription in the zebrafish circadian clock. PloS Biol. 2005; 3: e351
  • Liu Y., Merrow M., Loros J. J., Dunlap J. C. How temperature changes reset a circadian oscillator. Science 1998; 281: 825–829
  • Masuda T., Iigo M., Mizusawa K., Naruse M., Oishi T., Aida K., Tabata M. Variations in plasma melatonin levels of the rainbow trout (Oncorhynchus mykiss) under various light and temperature conditions. Zool. Sci. 2003; 20: 1011–1016
  • Moyer R. W., Firth B. T., Kennaway D. J. Effect of variable temperatures, darkness and light on the secretion of melatonin by pineal explants in the gecko, Christinus marmoratus. Brain Res. 1997; 747: 230–235
  • Pando M. P., Sassone‐Corsi P. Unraveling the mechanisms of the vertebrate circadian clock: zebrafish may light the way. BioEssays 2002; 24: 419–426
  • Reebs S. G. Plasticity of diel and circadian activity rhythms in fishes. Rev. Fish Biol. Fisher. 2002; 12: 349–371
  • Rensing L., Ruoff P. Temperature effect on entrainment, phase shifting, and amplitude of circadian clocks and its molecular bases. Chronobiol. Int. 2002; 19: 807–864
  • Ruby N. F., Burns D. E., Heller H. C. Circadian rhythms in the suprachiasmatic nucleus are temperature‐compensated and phase‐shifted by heat pulses in vitro. J. Neurosci. 1999; 19: 8630–8636
  • Samejima M., Shavali S., Tamotsu S., Uchida K., Morita Y., Fukuda A. Light‐ and temperature‐dependence of the melatonin secretion rhythm in the pineal organ of the lamprey, Lampetra japonica. Jpn. J. Physiol. 2000; 50: 437–442
  • Sánchez‐Vázquez F. J., Madrid J. A., Zamora S., Iigo M., Tabata M. Demand feeding and locomotor circadian rhythms in the goldfish, Carassius auratus: dual and independent phasing. Physiol. Behav. 1996; 60: 665–674
  • Shimizu A. Effect of photoperiod and temperature on gonadal activity and plasma steroid levels in a reared strain of the mummichog (Fundulus heteroclitus) during different phases of its annual reproductive cycle. Gen. Comp. Endocrinol. 2003; 131: 310–324
  • Sidote D., Majercak J., Parikh V., Edery I. Differential effects of light and heat on the Drosophila circadian clock proteins PER and TIM. Mol. Cel. Biol. 1998; 18: 2004–2013
  • Touitou Y., Portaluppi F., Smolensky M. H., Rensing L. Ethical principles and standards for the conduct of human and animal biological rhythm research. Chronobiol. Int. 2004; 21: 161–170
  • Valenciano A. I., Alonso‐Gómez A. L., Alonso‐Bedate M., Delgado M. J. Effect of constant and fluctuating temperature on daily melatonin production by eyecups from Rana perezi. J. Comp. Physiol. B 1997; 167: 221–228
  • Wright M. L., Bruni N. K. Influence of the photocycle and thermocycle on rhtyhms of plasma thyroxine and plasma and ocular melatonin in late metamorphic stages of the bullfrog tadpole, Rana catesbeiana. Comp. Biochem. Physiol. A 2004; 139: 33–40
  • Yoshii T., Sakamoto M., Tomioka K. A temperature‐dependent timing mechanism is involved in the circadian system that drives locomotor rhythms in the fruit fly Drosophila melanogaster. Zool. Sci. 2002; 19: 841–850
  • Zachmann A., Knijff S. C.M., Bolliet V., Ali M. A. Effects of temperature cycles and photoperiod on rhythmic melatonin secretion from the pineal organ of a teleost (Catostomus commersoni) in vitro. Neuroendocrinol. Lett. 1991; 13: 325–330

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.