Publication Cover
Chronobiology International
The Journal of Biological and Medical Rhythm Research
Volume 24, 2007 - Issue 2
1,426
Views
219
CrossRef citations to date
0
Altmetric
Review

Molecular Circadian Rhythms in Central and Peripheral Clocks in Mammals

, &
Pages 195-213 | Received 06 Jul 2006, Accepted 01 Dec 2006, Published online: 07 Jul 2009

References

  • Abe M, Herzog E D, Yamazaki S, Straume M, Tei H, Sakaki Y, Menaker M, Block G D. Circadian rhythms in isolated brain regions. J. Neurosci. 2002; 22: 350–356
  • Akashi M, Takumi T. The orphan nuclear receptor RORalpha regulates circadian transcription of the mammalian core‐clock Bmal1. Nat. Struct. Mol. Biol. 2005; 12: 441–448
  • Akashi M, Tsuchiya Y, Yoshino T, Nishida E. Control of intracellular dynamics of mammalian period proteins by casein kinase I epsilon (CKIepsilon) and CKIdelta in cultured cells. Mol. Cell. Biol. 2002; 22: 1693–1703
  • Akashi M, Ichise T, Mamine T, Takumi T. Molecular mechanism of cell‐autonomous circadian gene expression of Period2, a crucial regulator of the mammalian circadian clock. Mol. Biol. Cell. 2006; 17: 555–565
  • Andre E, Conquet F, Steinmayr M, Stratton S C, Porciatti V, Becker‐Andre M. Disruption of retinoid‐related orphan receptor beta changes circadian behavior, causes retinal degeneration and leads to vacillans phenotype in mice. Embo. J. 1998a; 17: 3867–3877
  • Andre E, Gawlas K, Becker‐Andre M. A novel isoform of the orphan nuclear receptor RORbeta is specifically expressed in pineal gland and retina. Gene. 1998b; 216: 277–283
  • Asher G, Schibler U. A CLOCK‐less clock. Trends Cell Biol. 2006; 16: 547–549
  • Bacon Y, Ooi A, Kerr S, Shaw‐Andrews L, Winchester L, Breeds S, Tymoska‐Lalanne Z, Clay J, Greenfield A G, Nolan P M. Screening for novel ENU‐induced rhythm, entrainment and activity mutants. Genes Brain Behav. 2004; 3: 196–205
  • Baggs J E, Green C B. Nocturnin, a deadenylase in Xenopus laevis retina: a mechanism for posttranscriptional control of circadian‐related mRNA. Curr. Biol. 2003; 13: 189–198
  • Balsalobre A. Clock genes in mammalian peripheral tissues. Cell Tissue Res. 2002; 309: 193–199
  • Balsalobre A, Brown S A, Marcacci L, Tronche F, Kellendonk C, Reichardt H M, Schutz G, Schibler U. Resetting of circadian time in peripheral tissues by glucocorticoid signaling. Science 2000; 289: 2344–2347
  • Barnes J W, Tischkau S A, Barnes J A, Mitchell J W, Burgoon P W, Hickok J R, Gillette M U. Requirement of mammalian timeless for circadian rhythmicity. Science 2003; 302: 439–442
  • Bélanger V, Picard N, Cermakian N. The circadian regulation of Presenilin‐2 gene expression. Chronobiol. Int. 2006; 23: 747–766
  • Bell‐Pedersen D, Cassone V M, Earnest D J, Golden S S, Hardin P E, Thomas T L, Zoran M J. Circadian rhythms from multiple oscillators: lessons from diverse organisms. Nat. Rev. Genet. 2005; 6: 544–556
  • Benna C, Scannapieco P, Piccin A, Sandrelli F, Zordan M, Rosato E, Kyriacou C P, Valle G, Costa R. A second timeless gene in Drosophila shares greater sequence similarity with mammalian tim. Curr. Biol. 2000; 10: R512–R513
  • Brown S A, Ripperger J, Kadener S, Fleury‐Olela F, Vilbois F, Rosbash M, Schibler U. PERIOD1‐associated proteins modulate the negative limb of the mammalian circadian oscillator. Science 2005; 308: 693–696
  • Bunger M K, Wilsbacher L D, Moran S M, Clendenin C, Radcliffe L A, Hogenesch J B, Simon M C, Takahashi J S, Bradfield C A. Mop3 is an essential component of the master circadian pacemaker in mammals. Cell 2000; 103: 1009–1017
  • Camacho F, Cilio M, Guo Y, Virshup D M, Patel K, Khorkova O, Styren S, Morse B, Yao Z, Keesler G A. Human casein kinase Idelta phosphorylation of human circadian clock proteins period 1 and 2. FEBS Lett. 2001; 489: 159–165
  • Cardone L, Hirayama J, Giordano F, Tamaru T, Palvimo J J, Sassone‐Corsi P. Circadian clock control by SUMOylation of BMAL1. Science 2005; 309: 1390–1394
  • Cermakian N, Boivin D B. A molecular perspective of human circadian rhythm disorders. Brain Res. Rev. 2003; 42: 204–220
  • Cermakian N, Sassone‐Corsi P. Environmental stimulus perception and control of circadian clocks. Curr. Opin. Neurobiol. 2002; 12: 359–365
  • Cermakian N, Whitmore D, Foulkes N S, Sassone‐Corsi P. Asynchronous oscillations of two zebrafish CLOCK partners reveal differential clock control and function. Proc. Natl. Acad. Sci. USA. 2000; 97: 4339–4344
  • Crosio C, Cermakian N, Allis C D, Sassone‐Corsi P. Light induces chromatin modification in cells of the mammalian circadian clock. Nat. Neurosci. 2000; 3: 1241–1247
  • Curtis A M, Seo S B, Westgate E J, Rudic R D, Smyth E M, Chakravarti D, FitzGerald G A, McNamara P. Histone acetyltransferase‐dependent chromatin remodeling and the vascular clock. J. Biol. Chem. 2004; 279: 7091–7097
  • Dardente H, Fortier E E, Martineau V, Cermakian N. Cryptochromes impair phosphorylation of transcriptional activators in the clock: a general mechanism for circadian repression. Biochem. J. 2007; 402: 525–536
  • DeBruyne J P, Noton E, Lambert C M, Maywood E S, Weaver D R, Reppert S M. A clock shock: mouse CLOCK is not required for circadian oscillator function. Neuron 2006; 50: 465–477
  • Doi M, Hirayama J, Sassone‐Corsi P. Circadian regulator CLOCK is a histone acetyltransferase. Cell 2006; 125: 497–508
  • Dudley C A, Erbel‐Sieler C, Estill S J, Reick M, Franken P, Pitts S, McKnight S L. Altered patterns of sleep and behavioral adaptability in NPAS2‐deficient mice. Science 2003; 301: 379–383
  • Duffield G E. DNA microarray analyses of circadian timing: the genomic basis of biological time. J. Neuroendocrinol. 2003; 15: 991–1002
  • Dunlap J C, Loros J J, DeCoursey P J. Chronobiology: biological timekeeping, J C Dunlap, J J Loros, P J DeCoursey. Sinauer Associates, Sunderland, Massachusetts 2004; 406
  • Edery I, Zwiebel L J, Dembinska M E, Rosbash M. Temporal phosphorylation of the Drosophila period protein. Proc. Natl. Acad. Sci. USA. 1994; 91: 2260–2264
  • Eide E J, Vielhaber E L, Hinz W A, Virshup D M. The circadian regulatory proteins BMAL1 and cryptochromes are substrates of casein kinase Iepsilon. J. Biol. Chem. 2002; 277: 17248–17254
  • Eide E J, Woolf M F, Kang H, Woolf P, Hurst W, Camacho F, Vielhaber E L, Giovanni A, Virshup D M. Control of mammalian circadian rhythm by CKIepsilon‐regulated proteasome‐mediated PER2 degradation. Mol. Cell. Biol. 2005; 25: 2795–2807
  • Etchegaray J P, Lee C, Wade P A, Reppert S M. Rhythmic histone acetylation underlies transcription in the mammalian circadian clock. Nature 2003; 421: 177–182
  • Etchegaray J P, Yang X, Debruyne J P, Peters A H, Weaver D R, Jenuwein T, Reppert S M. The polycomb group protein EZH2 is required for mammalian circadian clock function. J. Biol. Chem. 2006; 281: 21209–21215
  • Field M D, Maywood E S, O'Brien J A, Weaver D R, Reppert S M, Hastings M H. Analysis of clock proteins in mouse SCN demonstrates phylogenetic divergence of the circadian clockwork and resetting mechanisms. Neuron 2000; 25: 437–447
  • Gallego M, Eide E J, Woolf M F, Virshup D M, Forger D B. An opposite role for tau in circadian rhythms revealed by mathematical modeling. Proc. Natl. Acad. Sci. USA. 2006a; 103: 10618–10623
  • Gallego M, Kang H, Virshup D M. Protein phosphatase 1 regulates the stability of the circadian protein PER2. Biochem. J. 2006b; 399: 169–175
  • Gau D, Lemberger T, von Gall C, Kretz O, Le Minh N, Gass P, Schmid W, Schibler U, Korf H W, Schutz G. Phosphorylation of CREB Ser142 regulates light‐induced phase shifts of the circadian clock. Neuron 2002; 34: 245–253
  • Gekakis N, Staknis D, Nguyen H B, Davis F C, Wilsbacher L D, King D P, Takahashi J S, Weitz C J. Role of the CLOCK protein in the mammalian circadian mechanism. Science 1998; 280: 1564–1569
  • Giguere V. Orphan nuclear receptors: from gene to function. Endocr. Rev. 1999; 20: 689–725
  • Goldowitz D, Frankel W N, Takahashi J S, Holtz‐Vitaterna M, Bult C, Kibbe W A, Snoddy J, Li Y, Pretel S, Yates J, Swanson D J. Large‐scale mutagenesis of the mouse to understand the genetic bases of nervous system structure and function. Brain Res. Mol. Brain Res. 2004; 132: 105–115
  • Gotter A L, Manganaro T, Weaver D R, Kolakowski L F, Jr, Possidente B, Sriram S, MacLaughlin D T, Reppert S M. A time‐less function for mouse timeless. Nat. Neurosci. 2000; 3: 755–756
  • Granados‐Fuentes D, Prolo L M, Abraham U, Herzog E D. The suprachiasmatic nucleus entrains, but does not sustain, circadian rhythmicity in the olfactory bulb. J. Neurosci. 2004; 24: 615–619
  • Grechez‐Cassiau A, Panda S, Lacoche S, Teboul M, Azmi S, Laudet V, Hogenesch J B, Taneja R, Delaunay F. The transcriptional repressor STRA13 regulates a subset of peripheral circadian outputs. J. Biol. Chem. 2004; 279: 1141–1150
  • Griffin E A, Jr, Staknis D, Weitz C J. Light‐independent role of CRY1 and CRY2 in the mammalian circadian clock. Science 1999; 286: 768–771
  • Grima B, Lamouroux A, Chelot E, Papin C, Limbourg‐Bouchon B, Rouyer F. The F‐box protein Slimb controls the levels of clock proteins Period and Timeless. Nature 2002; 420: 178–182
  • Guillaumond F, Dardente H, Giguère V, Cermakian N. Differential control of Bmal1 circadian transcription by REV‐ERB and ROR nuclear receptors. J. Biol. Rhythms. 2005; 20: 391–403
  • Guo H, Brewer J M, Lehman M N, Bittman E L. Suprachiasmatic regulation of circadian rhythms of gene expression in hamster peripheral organs: effects of transplanting the pacemaker. J. Neurosci. 2006; 26: 6406–6412
  • Harada Y, Sakai M, Kurabayashi N, Hirota T, Fukada Y. Ser‐557‐phosphorylated mCRY2 is degraded upon synergistic phosphorylation by glycogen synthase kinase‐3 beta. J. Biol. Chem. 2005; 280: 31714–31721
  • Harms E, Kivimae S, Young M W, Saez L. Posttranscriptional and posttranslational regulation of clock genes. J. Biol. Rhythms. 2004; 19: 361–373
  • Hastings M H, Reddy A B, Maywood E S. A clockwork web: circadian timing in brain and periphery, in health and disease. Nat. Rev. Neurosci. 2003; 4: 649–661
  • Hirata H, Yoshiura S, Ohtsuka T, Bessho Y, Harada T, Yoshikawa K, Kageyama R. Oscillatory expression of the bHLH factor Hes1 regulated by a negative feedback loop. Science 2002; 298: 840–843
  • Hirose T, Smith R J, Jetten A M. ROR gamma: the third member of ROR/RZR orphan receptor subfamily that is highly expressed in skeletal muscle. Biochem. Biophys. Res. Commun. 1994; 205: 1976–1983
  • Hogenesch J B, Gu Y Z, Jain S, Bradfield C A. The basic‐helix‐loop‐helix‐PAS orphan MOP3 forms transcriptionally active complexes with circadian and hypoxia factors. Proc. Natl. Acad. Sci. USA. 1998; 95: 5474–5479
  • Hogenesch J B, Gu Y Z, Moran S M, Shimomura K, Radcliffe L A, Takahashi J S, Bradfield C A. The basic helix‐loop‐helix‐PAS protein MOP9 is a brain‐specific heterodimeric partner of circadian and hypoxia factors. J. Neurosci. 2000; 20: 1–5
  • Honma S, Kawamoto T, Takagi Y, Fujimoto K, Sato F, Noshiro M, Kato Y, Honma K. Dec1 and Dec2 are regulators of the mammalian molecular clock. Nature 2002; 419: 841–844
  • Iitaka C, Miyazaki K, Akaike T, Ishida N. A role for glycogen synthase kinase‐3beta in the mammalian circadian clock. J. Biol. Chem. 2005; 280: 29397–29402
  • Ikeda M, Yu W, Hirai M, Ebisawa T, Honma S, Yoshimura K, Honma K I, Nomura M. cDNA cloning of a novel bHLH‐PAS transcription factor superfamily gene, BMAL2: its mRNA expression, subcellular distribution, and chromosomal localization. Biochem. Biophys. Res. Commun. 2000; 275: 493–502
  • Jin X, Shearman L P, Weaver D R, Zylka M J, de Vries G J, Reppert S M. A molecular mechanism regulating rhythmic output from the suprachiasmatic circadian clock. Cell 1999; 96: 57–68
  • Kawamoto T, Noshiro M, Sato F, Maemura K, Takeda N, Nagai R, Iwata T, Fujimoto K, Furukawa M, Miyazaki K, Honma S, Honma K, Kato Y. A novel autofeedback loop of Dec1 transcription involved in circadian rhythm regulation. Biochem. Biophys. Res. Commun. 2004; 313: 117–124
  • King D P, Zhao Y, Sangoram A M, Wilsbacher L D, Tanaka M, Antoch M P, Steeves T D, Vitaterna M H, Kornhauser J M, Lowrey P L, Turek F W, Takahashi J S. Positional cloning of the mouse circadian clock gene. Cell 1997; 89: 641–653
  • Kiyohara Y B, Tagao S, Tamanini F, Morita A, Sugisawa Y, Yasuda M, Yamanaka I, Ueda H R, van der Horst G T, Kondo T, Yagita K. The BMAL1 C terminus regulates the circadian transcription feedback loop. Proc. Natl. Acad. Sci. USA. 2006; 103: 10074–10079
  • Ko C H, Takahashi J S. Molecular components of the mammalian circadian clock. Hum. Mol. Genet. 2006; R271–R277, 15 Spec. No. 2
  • Ko H W, Jiang J, Edery I. Role for Slimb in the degradation of drosophila period protein phosphorylated by doubletime. Nature 2002; 420: 673–678
  • Kojima S, Hirose M, Tokunaga K, Sakaki Y, Tei H. Structural and functional analysis of 3′ untranslated region of mouse Period1 mRNA. Biochem. Biophys. Res. Commun. 2003; 301: 1–7
  • Kondratov R V, Chernov M V, Kondratova A A, Gorbacheva V Y, Gudkov A V, Antoch M P. BMAL1‐dependent circadian oscillation of nuclear CLOCK: posttranslational events induced by dimerization of transcriptional activators of the mammalian clock system. Genes Dev. 2003; 17: 1921–1932
  • Kondratov R V, Kondratova A A, Lee C, Gorbacheva V Y, Chernov M V, Antoch M P. Post‐translational regulation of circadian transcriptional CLOCK(NPAS2)/BMAL1 complex by CRYPTOCHROMES. Cell Cycle 2006; 5: 890–895
  • Kume K, Zylka M J, Sriram S, Shearman L P, Weaver D R, Jin X, Maywood E S, Hastings M H, Reppert S M. mCRY1 and mCRY2 are essential components of the negative limb of the circadian clock feedback loop. Cell 1999; 98: 193–205
  • Kwak E, Kim T D, Kim K T. Essential role of 3′ untranslated region‐mediated mRNA decay in circadian oscillations of mouse period3 mRNA. J. Biol. Chem. 2006; 281: 19100–19106
  • Kwon I, Lee J, Chang S H, Jung N C, Lee B J, Son G H, Kim K, Lee K H. BMAL1 shuttling controls transactivation and degradation of the CLOCK/BMAL1 heterodimer. Mol. Cell. Biol. 2006; 26: 7318–7330
  • Lamont E W, Robinson B, Stewart J, Amir S. The central and basolateral nuclei of the amygdala exhibit opposite diurnal rhythms of expression of the clock protein Period2. Proc. Natl. Acad. Sci. USA. 2005; 102: 4180–4184
  • Lee C, Etchegaray J P, Cagampang F R, Loudon A S, Reppert S M. Posttranslational mechanisms regulate the mammalian circadian clock. Cell 2001; 107: 855–867
  • Lee C, Weaver D R, Reppert S M. Direct association between mouse PERIOD and CKIepsilon is critical for a functioning circadian clock. Mol. Cell. Biol. 2004; 24: 584–594
  • Li Y, Song X, Ma Y, Liu J, Yang D, Yan B. DNA binding, but not interaction with Bmal1, is responsible for DEC1‐mediated transcription regulation of the circadian gene mPer1. Biochem. J. 2004; 382: 895–904
  • Lidder P, Gutierrez R A, Salome P A, McClung C R, Green P J. Circadian control of messenger RNA stability. Association with a sequence‐specific messenger RNA decay pathway. Plant Physiol. 2005; 138: 2374–2385
  • Lopez‐Molina L, Conquet F, Dubois‐Dauphin M, Schibler U. The DBP gene is expressed according to a circadian rhythm in the suprachiasmatic nucleus and influences circadian behavior. EMBO J. 1997; 16: 6762–6771
  • Lowrey P L, Shimomura K, Antoch M P, Yamazaki S, Zemenides P D, Ralph M R, Menaker M, Takahashi J S. Positional systemic cloning and functional characterization of the mammalian circadian mutation tau. Science 2000; 288: 483–492
  • Maemura K, de la Monte S M, Chin M T, Layne M D, Hsieh C M, Yet S F, Perrella M A, Lee M E. CLIF, a novel cycle‐like factor, regulates the circadian oscillation of plasminogen activator inhibitor‐1 gene expression. J. Biol. Chem. 2000; 275: 36847–36851
  • Majercak J, Chen W F, Edery I. Splicing of the period gene 3′‐terminal intron is regulated by light, circadian clock factors, and phospholipase C. Mol. Cell. Biol. 2004; 24: 3359–3372
  • McNamara P, Seo S, Rudic R D, Sehgal A, Chakravarti D, FitzGerald G A. Regulation of clock and mop4 by nuclear hormone receptors in the vasculature. A humoral mechanism to reset a peripheral clock. Cell 2001; 105: 877–889
  • Moore R Y, Silver R. Suprachiasmatic nucleus organization. Chronobiol. Int. 1998; 15: 475–487
  • Nagoshi E, Saini C, Bauer C, Laroche T, Naef F, Schibler U. Circadian gene expression in individual fibroblasts: cell‐autonomous and self‐sustained oscillators pass time to daughter cells. Cell 2004; 119: 693–705
  • Nakajima M, Imai K, Ito H, Nishiwaki T, Murayama Y, Iwasaki H, Oyama T, Kondo T. Reconstitution of circadian oscillation of cyanobacterial KaiC phosphorylation in vitro. Science 2005; 308: 414–415
  • Nakajima Y, Ikeda M, Kimura T, Honma S, Ohmiya Y, Honma K. Bidirectional role of orphan nuclear receptor RORalpha in clock gene transcriptions demonstrated by a novel reporter assay system. FEBS Lett. 2004; 565: 122–126
  • Naruse Y, Oh‐hashi K, Iijima N, Naruse M, Yoshioka H, Tanaka M. Circadian and light‐induced transcription of clock gene Per1 depends on histone acetylation and deacetylation. Mol. Cell. Biol. 2004; 24: 6278–6287
  • Oishi K, Sakamoto K, Okada T, Nagase T, Ishida N. Antiphase circadian expression between BMAL1 and period homologue mRNA in the suprachiasmatic nucleus and peripheral tissues of rats. Biochem. Biophys. Res. Commun. 1998; 253: 199–203
  • Okano T, Sasaki M, Fukada Y. Cloning of mouse BMAL2 and its daily expression profile in the suprachiasmatic nucleus: a remarkable acceleration of Bmal2 sequence divergence after Bmal gene duplication. Neurosci. Lett. 2001; 300: 111–114
  • Onishi H, Yamaguchi S, Yagita K, Ishida Y, Dong X, Kimura H, Jing Z, Ohara H, Okamura H. Rev‐erbalpha gene expression in the mouse brain with special emphasis on its circadian profiles in the suprachiasmatic nucleus. J. Neurosci. Res. 2002; 68: 551–557
  • Partch C L, Shields K F, Thompson C L, Selby C P, Sancar A. Posttranslational regulation of the mammalian circadian clock by cryptochrome and protein phosphatase 5. Proc. Natl. Acad. Sci. USA. 2006; 103: 10467–10472
  • Preitner N, Damiola F, Lopez‐Molina L, Zakany J, Duboule D, Albrecht U, Schibler U. The orphan nuclear receptor REV‐ERBalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell 2002; 110: 251–260
  • Reddy A B, Karp N A, Maywood E S, Sage E A, Deery M, O'Neill J S, Wong G K, Chesham J, Odell M, Lilley K S, Kyriacou C P, Hastings M H. Circadian orchestration of the hepatic proteome. Curr. Biol. 2006; 16: 1107–1115
  • Reick M, Garcia J A, Dudley C, McKnight S L. NPAS2: an analog of clock operative in the mammalian forebrain. Science 2001; 293: 506–509
  • Reppert S M, Weaver D R. Coordination of circadian timing in mammals. Nature 2002; 418: 935–941
  • Ripperger J A, Schibler U. Rhythmic CLOCK‐BMAL1 binding to multiple E‐box motifs drives circadian Dbp transcription and chromatin transitions. Nat. Genet. 2006; 38: 369–374
  • Ripperger J A, Shearman L P, Reppert S M, Schibler U. CLOCK, an essential pacemaker component, controls expression of the circadian transcription factor DBP. Genes Dev. 2000; 14: 679–689
  • Robinson B G, Frim D M, Schwartz W J, Majzoub J A. Vasopressin mRNA in the suprachiasmatic nuclei: daily regulation of polyadenylate tail length. Science 1988; 241: 342–344
  • Sanada K, Okano T, Fukada Y. Mitogen‐activated protein kinase phosphorylates and negatively regulates basic helix‐loop‐helix‐PAS transcription factor BMAL1. J. Biol. Chem. 2002; 277: 267–271
  • Sangoram A M, Saez L, Antoch M P, Gekakis N, Staknis D, Whiteley A, Fruechte E M, Vitaterna M H, Shimomura K, King D P, Young M W, Weitz C J, Takahashi J S. Mammalian circadian autoregulatory loop: a timeless ortholog and mPer1 interact and negatively regulate CLOCK‐BMAL1‐induced transcription. Neuron 1998; 21: 1101–1113
  • Sathyanarayanan S, Zheng X, Xiao R, Sehgal A. Posttranslational regulation of Drosophila PERIOD protein by protein phosphatase 2A. Cell 2004; 116: 603–615
  • Sato F, Kawamoto T, Fujimoto K, Noshiro M, Honda K K, Honma S, Honma K, Kato Y. Functional analysis of the basic helix‐loop‐helix transcription factor DEC1 in circadian regulation. Interaction with BMAL1. Eur. J. Biochem. 2004a; 271: 4409–4419
  • Sato T K, Panda S, Miraglia L J, Reyes T M, Rudic R D, McNamara P, Naik K A, FitzGerald G A, Kay S A, Hogenesch J B. A functional genomics strategy reveals Rora as a component of the mammalian circadian clock. Neuron 2004b; 43: 527–537
  • Sato T K, Yamada R G, Ukai H, Baggs J E, Miraglia L J, Kobayashi T J, Welsh D K, Kay S A, Ueda H R, Hogenesch J B. Feedback repression is required for mammalian circadian clock function. Nat. Genet. 2006; 38: 312–319
  • Schibler U, Ripperger J, Brown S A. Peripheral circadian oscillators in mammals: time and food. J. Biol. Rhythms. 2003; 18: 250–260
  • Schoenhard J A, Smith L H, Painter C A, Eren M, Johnson C H, Vaughan D E. Regulation of the PAI‐1 promoter by circadian clock components: differential activation by BMAL1 and BMAL2. J. Mol. Cell. Cardiol. 2003; 35: 473–481
  • Shearman L P, Zylka M J, Reppert S M, Weaver D R. Expression of basic helix‐loop‐helix/PAS genes in the mouse suprachiasmatic nucleus. Neuroscience 1999; 89: 387–397
  • Shearman L P, Sriram S, Weaver D R, Maywood E S, Chaves I, Zheng B, Kume K, Lee C C, van der Horst G T, Hastings M H, Reppert S M. Interacting molecular loops in the mammalian circadian clock. Science 2000; 288: 1013–1019
  • Shimomura K, Low‐Zeddies S S, King D P, Steeves T D, Whiteley A, Kushla J, Zemenides P, Lin A, Vitaterna M H, Churchill G A, Takahashi J S. Genome‐wide epistatic interaction analysis reveals complex genetic determinants of circadian behavior in mice. Genome Res. 2001; 11: 959–980
  • Shirogane T, Jin J, Ang X L, Harper J W. SCFbeta‐TRCP controls clock‐dependent transcription via casein kinase 1‐dependent degradation of the mammalian period‐1 (Per1) protein. J. Biol. Chem. 2005; 280: 26863–26872
  • Shu Y, Hong‐Hui L. Transcription, translation, degradation, and circadian clock. Biochem Biophys. Res. Commun. 2004; 321: 1–6
  • Stanewsky R, Lynch K S, Brandes C, Hall J C. Mapping of elements involved in regulating normal temporal period and timeless RNA expression patterns in Drosophila melanogaster. J. Biol. Rhythms. 2002; 17: 293–306
  • Sumi Y, Yagita K, Yamaguchi S, Ishida Y, Kuroda Y, Okamura H. Rhythmic expression of ROR beta mRNA in the mice suprachiasmatic nucleus. Neurosci. Lett. 2002; 320: 13–16
  • Suzuki T, Ishikawa A, Yoshimura T, Namikawa T, Abe H, Honma S, Honma K, Ebihara S. Quantitative trait locus analysis of abnormal circadian period in CS mice. Mamm. Genome. 2001; 12: 272–277
  • Takahata S, Ozaki T, Mimura J, Kikuchi Y, Sogawa K, Fujii‐Kuriyama Y. Transactivation mechanisms of mouse clock transcription factors, mClock and mArnt3. Genes Cells 2000; 5: 739–747
  • Takano A, Isojima Y, Nagai K. Identification of mPer1 phosphorylation sites responsible for the nuclear entry. J. Biol. Chem. 2004; 279: 32578–32585
  • Tischkau S A, Barnes J A, Lin F J, Myers E M, Barnes J W, Meyer‐Bernstein E L, Hurst W J, Burgoon P W, Chen D, Sehgal A, Gillette M U. Oscillation and light induction of timeless mRNA in the mammalian circadian clock. J. Neurosci. 1999; 19: RC15
  • Toh K L, Jones C R, He Y, Eide E J, Hinz W A, Virshup D M, Ptacek L J, Fu Y H. An hPer2 phosphorylation site mutation in familial advanced sleep‐phase syndrome. Science 2001; 291: 1040–1043
  • Travnickova‐Bendova Z, Cermakian N, Reppert S M, Sassone‐Corsi P. Bimodal regulation of mPeriod promoters by CREB‐dependent signaling and CLOCK/BMAL1 activity. Proc. Natl. Acad. Sci. USA. 2002; 99: 7728–7733
  • Triqueneaux G, Thenot S, Kakizawa T, Antoch M P, Safi R, Takahashi J S, Delaunay F, Laudet V. The orphan receptor Rev‐erbalpha gene is a target of the circadian clock pacemaker. J. Mol. Endocrinol. 2004; 33: 585–608
  • Ueda H R, Chen W, Adachi A, Wakamatsu H, Hayashi S, Takasugi T, Nagano M, Nakahama K, Suzuki Y, Sugano S, Iino M, Shigeyoshi Y, Hashimoto S. A transcription factor response element for gene expression during circadian night. Nature 2002; 418: 534–539
  • Ueda H R, Hayashi S, Chen W, Sano M, Machida M, Shigeyoshi Y, Iino M, Hashimoto S. System‐level identification of transcriptional circuits underlying mammalian circadian clocks. Nat. Genet. 2005; 37: 187–192
  • Vanselow K, Vanselow J T, Westermark P O, Reischl S, Maier B, Korte T, Herrmann A, Herzel H, Schlosser A, Kramer A. Differential effects of PER2 phosphorylation: molecular basis for the human familial advanced sleep phase syndrome (FASPS). Genes Dev. 2006; 20: 2660–2672
  • Vielhaber E, Eide E, Rivers A, Gao Z H, Virshup D M. Nuclear entry of the circadian regulator mPER1 is controlled by mammalian casein kinase I epsilon. Mol. Cell. Biol. 2000; 20: 4888–4899
  • Vitaterna M H, King D P, Chang A M, Kornhauser J M, Lowrey P L, McDonald J D, Dove W F, Pinto L H, Turek F W, Takahashi J S. Mutagenesis and mapping of a mouse gene, Clock, essential for circadian behavior. Science 1994; 264: 719–725
  • Welsh D K, Yoo S H, Liu A C, Takahashi J S, Kay S A. Bioluminescence imaging of individual fibroblasts reveals persistent, independently phased circadian rhythms of clock gene expression. Curr, Biol. 2004; 14: 2289–2295
  • Wilsbacher L D, Yamazaki S, Herzog E D, Song E J, Radcliffe L A, Abe M, Block G, Spitznagel E, Menaker M, Takahashi J S. Photic and circadian expression of luciferase in mPeriod1‐luc transgenic mice in vivo. Proc. Natl. Acad. Sci. USA. 2002; 99: 489–494
  • Xu Y, Padiath Q S, Shapiro R E, Jones C R, Wu S C, Saigoh N, Saigoh K, Ptacek L J, Fu Y H. Functional consequences of a CKIdelta mutation causing familial advanced sleep phase syndrome. Nature 2005; 434: 640–644
  • Yagita K, Tamanini F, Yasuda M, Hoeijmakers J H, van Der Horst G T, Okamura H. Nucleocytoplasmic shuttling and mCRY‐dependent inhibition of ubiquitylation of the mPER2 clock protein. Embo. J. 2002; 21: 1301–1314
  • Yamamoto T, Nakahata Y, Soma H, Akashi M, Mamine T, Takumi T. Transcriptional oscillation of canonical clock genes in mouse peripheral tissues. BMC Mol. Biol. 2004; 5: 18
  • Yamazaki S, Numano R, Abe M, Hida A, Takahashi R, Ueda M, Block G D, Sakaki Y, Menaker M, Tei H. Resetting central and peripheral circadian oscillators in transgenic rats. Science 2000; 288: 682–685
  • Yang Y, He Q, Cheng P, Wrage P, Yarden O, Liu Y. Distinct roles for PP1 and PP2A in the Neurospora circadian clock. Genes Dev. 2004; 18: 255–260
  • Yin L, Lazar M A. The orphan nuclear receptor Rev‐erbalpha recruits the N‐CoR/histone deacetylase 3 corepressor to regulate the circadian Bmal1 gene. Mol. Endocrinol. 2005; 19: 1452–1459
  • Yin L, Wang J, Klein P S, Lazar M A. Nuclear receptor Rev‐erbalpha is a critical lithium‐sensitive component of the circadian clock. Science 2006; 311: 1002–1005
  • Yoo S H, Yamazaki S, Lowrey P L, Shimomura K, Ko C H, Buhr E D, Siepka S M, Hong H K, Oh W J, Yoo O J, Menaker M, Takahashi J S. PERIOD2:LUCIFERASE real‐time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. Proc. Natl. Acad. Sci. USA. 2004; 101: 5339–5346
  • Yoo S H, Ko C H, Lowrey P L, Buhr E D, Song E J, Chang S, Yoo O J, Yamazaki S, Lee C, Takahashi J S. A noncanonical E‐box enhancer drives mouse Period2 circadian oscillations in vivo. Proc. Natl. Acad. Sci. USA. 2005; 102: 2608–2613
  • Young M W, Kay S A. Time zones: a comparative genetics of circadian clocks. Nat. Rev. Genet. 2001; 2: 702–715
  • Zhou Y D, Barnard M, Tian H, Li X, Ring H Z, Francke U, Shelton J, Richardson J, Russell D W, McKnight S L. Molecular characterization of two mammalian bHLH‐PAS domain proteins selectively expressed in the central nervous system. Proc. Natl. Acad. Sci. USA. 1997; 94: 713–718
  • Zylka M J, Shearman L P, Levine J D, Jin X, Weaver D R, Reppert S M. Molecular analysis of mammalian timeless. Neuron 1998; 21: 1115–1122

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.