Publication Cover
Chronobiology International
The Journal of Biological and Medical Rhythm Research
Volume 24, 2007 - Issue 3
48
Views
7
CrossRef citations to date
0
Altmetric
Original

Effects of Photophase and Altitude on Oviposition Rhythm of the Himalayan Strains of Drosophila Ananassae

, , , , , , , & show all
Pages 389-405 | Received 16 Aug 2006, Accepted 22 Dec 2006, Published online: 07 Jul 2009

References

  • Arai T, Watari Y. Effects of photoperiod and aging on locomotor activity rhythms in the onion fly. Delia antiqua. J. Insect Physiol. 1997; 43: 567–576
  • Aschoff J. Exogenous and endogenous components in circadian rhythms. Cold Spring Harbor Symposia on Quantitative Biology 1960; 25: 11–28
  • Aschoff J. Free‐running and entrained circadian rhythms. Handbook of behavioral neurobiology: biological rhythms, J Aschoff. Plenum, New York 1981; 81–93
  • Aschoff J. Masking and parametric effects of high‐frequency light‐dark cycles. Jap. J. Physiol. 1999; 49: 11–18
  • Aschoff J, Pohl H. Phase relations between a circadian rhythm and its zeitgeber within the range of entrainment. Naturwissenschaften 1978; 65: 80–84
  • Barret R K, Page T L. Effects of light on circadian pacemaker development, I: the free running period. J. Comp. Physiol A. 1989; 165: 41–49
  • Dahlgaard J, Hasson E, Loeschke V. Behavioral differentiation in oviposition activity in Drosophila buzzatii from highland and lowland populations in Argentina: plasticity or thermal adaptation?. Evol. Int. J. Org. Evol. 2001; 55: 738–747
  • Engelmann W, Mack J. Different oscillators control the circadian rhythm of eclosion and activity in Drosophila. J. Comp. Physiol 1978; 127: 229–237
  • Eskin A. Some properties of the system controlling the circadian activity rhythm of sparrows. Biochemistry, M Menaker. National Academy of Sciences, Washington, DC 1971; 55–80
  • Gruwez G, Hoste C, Lints C V, Lints F A. Oviposition rhythm in Drosophila melanogaster and its alteration by a change in photoperiodicity. Experientia 1972; 27: 1414–1416
  • Johnson C H, Elliot J A, Foster R. Entrainment of circadian programs. Chronobiol. Int. 2003; 20: 741–774
  • Joshi D S. Psi‐mutation affects phase angle difference, free‐running period and phase‐shifts in Aedes krombeini (Stegomgia). Biol. Rhythm Res. 1996; 27: 421–430
  • Joshi D S. Selection for phase angle difference of the adult locomotor activity in Drosophila rajasekari affects the activity pattern, free running period, phase shifts and sensitivity to light. Biol. Rhythm Res. 1999; 30: 10–28
  • Joshi D S. Rhythm‐specific mutations in Drosophila rajasekari altered adult locomotor activity rhythm but not eclosion rhythm. Biol. Rhythm Res. 2001; 32: 35–43
  • Joshi D S, Gore A P. Latitudinal variation in eclosion rhythm among strains of Drosophila ananassae. Indian J. Exp. Biol. 1999; 37: 718–724
  • Khare P V, Barnabas R J, Kanojiya M, Kulkarni A D, Joshi D S. Temperature‐dependent eclosion rhythmicity in the high altitude Himalayan strains of Drosophila ananassae. Chronobiol. Int. 2002; 19: 1041–1052
  • Khare P V, Keny V L, Vanlalnghaka C, Satralkar M K, Kasture M S, Barnabas R J, Joshi D S. Effects of temperature, photoperiod, and light intensity on the eclosion rhythm of the high‐altitude Himalayan strain of Drosophila ananassae. Chronobiol. Int. 2004; 21: 353–365
  • Khare P V, Satralkar M K, Vanlalnghaka C, Keny V L, Kasture M S, Shivagaje A J, Barnabas R J, Joshi D S. Altitudinal variation in the circadian rhythm of oviposition in Drosophila ananassae. Chronobiol. Int. 2005; 22: 45–57
  • Koga M, Ushirogawa H, Tomioka K. Photoperiodic modulation of circadian rhythms in the cricket Gryllus bimaculatus. J. Insect Physiol. 2005; 51: 681–690
  • Lankinen P. Geographical variation in circadian eclosion rhythm and photoperiodic adult diapause in Drosophila littoralis. J. Comp. Physiol A. 1986; 159: 123–142
  • Lankinen P. Chracterization of linne, a new autosomal eclosion rhythm mutant in Drosophila subobscura. Behavior Genetics 1993; 23: 359–367
  • McCabe C, Birley A J. Oviposition in the period genotypes of Drosophila melanogaster. Chronobiol. Int. 1998; 15: 119–133
  • Page T L, Barret R K. Effects of light on circadian pacemaker development, II: response to light. J. Comp. Physiol. A. 1989; 165: 51–59
  • Page T L, Block G D. Circadian rhythmicity in cockroaches: effects of early post‐embryonic development and ageing. Physiol. Entomol. 1980; 5: 271–281
  • Pittendrigh C S. Circadian rhythms and the circadian organization of living systems. Cold Spring Harbor Symposia on Quantitative Biology: Biological Clocks 1960; 25: 59–184
  • Pittendrigh C S. On the mechanism of entrainment of a circadian rhythm by light cycles. Circadian clocks, J Aschoff. North-Holland Publishing Co., Amsterdam 1965; 277–297
  • Pittendrigh C S. Circadian organization and photoperiodic phenomena. Biological clocks in seasonal reproductive cycles, B K Follett. John Wright and Sons, Bristol 1981; 1–35
  • Pittendrigh C S, Daan S A. A functional analysis of circadian pacemakers in nocturnal rodents, I: the stability and lability of spontaneous frequency. J. Comp. Physiol. 1976; 106: 223–252
  • Pittendrigh C S, Takamura T. Latitudinal clines in the properties of a circadian pacemaker. J. Biol. Rhythms. 1989; 4: 217–235
  • Pittendrigh C S, Walter T K, Takamura T. The amplitude of circadian oscillations: temperature dependence, latitudinal clines, and the photoperiodic time measurement. J. Biol. Rhythms. 1991; 6: 299–313
  • Satralkar M K, Khare P V, Keny V L, Vanlalnghaka C, Kasture M S, Shivagaje A J, Iyyer S B, Joshi D S. Effect of light intensity on the oviposition rhythm of the altitudinal strains of Drosophila ananassae. Chronobiol. Int. 2007a; 24: 21–30
  • Satralkar M K, Keny V L, Khare P V, Vanlalnghaka C, Kasture M S, Shivagaje A J, Barnabas R J, Iyyer S B, Joshi D S. Latitudinal variation in oviposition rhythm of Drosophila ananassae strains originating from the equator to subtropics. Biol. Rhythm Res. 2007b, in press
  • Satralkar M K, Keny V L, Khare P V, Vanlalnghaka C, Kasture M S, Shivagaje A J, Barnabas R J, Iyyer S B, Joshi D S. Latitude dependent lability of phase response curve for oviposition rhythm of Drosophila ananassae. Biol. Rhythm Res. 2007c, in press
  • Saunders D S. Circadian rhythms of activity in populations of insects. Insect clocks, D S Saunders. Pergamon Press, Oxford 1982; 38–99
  • Tomioka K, Chiba Y. Light cycle during post‐embryonic development affects adult circadian parameters of the cricket (Gryllus bimaculatus) optic lobe pacemaker. J. Insect Physiol. 1989a; 35: 273–276
  • Tomioka K, Chiba Y. Photoperiod during post‐embryonic development affects some parameters of adult circadian rhythm in the cricket. Gryllus bimaculatus. Zool. Sci. 1989b; 6: 565–571
  • Touitou Y, Smolensky M H, Portaluppi F. Ethics, standards, and procedures in human and animal research in chronobiology. Chronobiol. Int. 2006; 23: 1083–1096
  • Vanlalnghaka C, Pillai P F, Keny V L, Barnabas R J, Pandit S J, Joshi D S. Effects of psi‐mutations on the oviposition rhythm of Drosophila rajasekari. Biol. Rhythm Res. 2003; 34: 435–446
  • Winfree A T. An integrated view of resetting of a circadian clock. J. Theor. Biol. 1970; 28: 327–374
  • Zimmerman W F. On the absence of rhythmicity in Drosophila pseudoobscura pupae. Biol. Bull. 1969; 136: 494–500

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.