Publication Cover
Chronobiology International
The Journal of Biological and Medical Rhythm Research
Volume 25, 2008 - Issue 6
111
Views
6
CrossRef citations to date
0
Altmetric
Original Research

Rhythmic Fluctuations in the Concentration of Intracellular Mg2+ in Association with Spontaneous Rhythmic Contraction in Cultured Cardiac Myocytes

, , &
Pages 868-881 | Received 28 Apr 2008, Accepted 01 Jul 2008, Published online: 07 Jul 2009

References

  • Baylor S M, Chandler W K, Marschall M W. Optical measurements of intracellular pH and magnesium in frog skeletal muscle fibres. J. Physiol. 1982; 331: 105–137
  • Cheng Y, Mowrey K, Efimov I R, Van Wagoner D R, Tchou P J, Mazgalev T N. Effects of 2,3‐butanedione monoxime on atrial‐atrioventricular nodal conduction in isolated rabbit heart. J. Cardiovasc. Electrophysiol. 1997; 8: 790–802
  • Harary I, Farley B. In vitro studies on single beating rat heart cells, I: Growth and organization. Exp. Cell Res. 1963; 29: 451–465
  • Irving M, Maylie J, Sizto N L, Chandler W K. Passive electrical and intrinsic optical properties of cut frog twitch fibers. J. Gen. Physiol. 1987; 89: 1–40
  • Irving M, Maylie J, Sizto N L, Chandler W K. Simultaneous monitoring of changes in magnesium and calcium concentrations in frog cut twitch fibers containing abtipyrylazo III. J. Gen. Physiol. 1989; 93: 585–608
  • Kawahara K, Nakayama Y. Fluctuations in the concentration of extracellular ATP synchronized with intracellular Ca2+ oscillatory rhythm in cultured cardiac myocytes. Chronobiol. Int. 2007; 24: 1–14
  • Kawahara K, Abe R, Yamauchi Y, Kohashi M. Fluctuations in contraction rhythm during simulated ischemia/reperfusion in cultured cardiac myocytes from neonatal rats. Biol. Rhythm Res. 2002; 33: 339–350
  • Kawahara K, Hachiro T, Yokokawa T, Nakajima T, Nakayama Y. Ischemia/reperfusion‐induced death of cardiac myocytes: Possible involvement of nitric oxide in the coordination of ATP supply and demand during ischemia. J. Mol. Cell. Cardiol. 2006; 40: 35–46
  • Kimura H, Oyamada Y, Ohshika H, Mori M, Oyamada M. Reversible inhibition of gap junctional intercellular communication, synchronous contraction, and synchronism of intracellular Ca2+ fluctuation in cultured neonatal rat cardiac myocytes by heptanol. Exp. Cell Res. 1995; 220: 348–356
  • Kirschenlohr H L, Metcalfe J C, Morris P G, Rodrigo G C. Ca2+ transient, Mg2+, and pH measurements in the cardiac cycle by 19F NMR. Proc. Natl. Acad. Sci. USA 1988; 85: 9017–9021
  • Ko Y H, Hong S, Pedersen P L. Chemical mechanism of ATP synthase. J. Biol. Chem. 1999; 274: 28853–28856
  • Kubota T, Tokuno K, Nakagawa J, Kitamura Y, Ogawa H, Suzuki Y, Suzuki K, Oka K. Na+/Mg2+ transporter acts as a Mg2+ buffering mechanism in PC12 cells. Biochem. Biophys. Res. Commun. 2003; 303: 332–336
  • Murphy E. Mysteries of magnesium homeostasis. Circ. Res. 2000; 86: 245–248
  • Nakayama Y, Kawahara K, Yoneyama M, Hachiro T. Rhythmic contraction and intracellular Ca2+ oscillatory rhythm in spontaneously beating cultured cardiac myocytes. Biol. Rhythm Res. 2005; 36: 317–326
  • Nakayama Y, Kawahara K, Hachiro T, Yamauchi Y, Yoneyama M. Possible involvement of ATP‐purinoceptor signaling in the intercellular synchronization of intracellular Ca2+ oscillation in cultured cardiac myocytes. BioSystems 2007; 90: 179–187
  • Park M K, Tepikin A V, Petersen O H. What can we learn about cell signalling by combining optical imaging and patch clamp techniques?. Eur. J. Physiol. 2002; 444: 305–316
  • Pelzer S, Chicuong L A, Pelzer D J. Phosphorylation‐dependent modulation of cardiac calcium current by intracellular free magnesium. Am. J. Physiol. 2001; 281: H1532–H1544
  • Qi M, Puglisi J L, Byron K L, Ojamaa K, Klein I, Bers D M, Samarel A M. Myosin heavy chain gene expression in neonatal rat heart cells. Am. J. Physiol. 1997; 273: C394–C403
  • Romani A, Scarpa A. Regulation of cell magnesium. Arch. Biochem. Biophys. 1992; 298: 1–12
  • Shoda T, Kikuchi K, Kojima H, Urano Y, Komatsu H, Suzuki K, Nagano T. Development of selective, visible light‐excitable, fluorescent magnesium ion probes with a novel fluorescence switching mechanism. Analyst 2003; 128: 719–723
  • Silverman H S, Lisa D F, Hui R C, Miyata H, Sollott S J, Hansford R G, Lakatta E G, Stern M D. Regulation of intracellular free Mg2+ and contraction in single adult mammalian cardiac myocytes. Am. J. Physiol. 1994; 266: C222–C233
  • Touitou Y, Smolensky M H, Portaluppi F. Ethics, standards, and procedures of animal and human chronobiology research. Chronobiol. Int. 2006; 23: 1083–1096
  • Valdivia H H, Kaplan J H, Ellis‐Davies G R, Lederer W J. Rapid adaptation of cardiac ryanodine receptors: Modulation by Mg2+ and phospholylation. Science 1995; 267: 1997–2000
  • Wei S‐K, Quigley J F, Hanlon S U, O'Rourke B, Haigney M P. Cytosolic free magnesium modulates Na/Ca exchange currents in pig myocytes. Cardiovasc. Res. 2002; 53: 334–340
  • White R E, Hartzell H C. Effects of intracellular free magnesium on calcium current in isolated cardiac myocytes. Science 1988; 239: 778–780
  • Yamauchi Y, Harada A, Kawahara K. Changes in the fluctuation of interbeat intervals in spontaneously beating cultured cardiac myocytes: Experimental and simulation studies. Biol. Cybern. 2002; 86: 147–154
  • Yoneyama M, Kawahara K. Fluctuation dynamics in coupled oscillator systems of spontaneously beating cultured cardiac myocytes. Physical Rev. E 2004; 70: 21904

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.