Publication Cover
Chronobiology International
The Journal of Biological and Medical Rhythm Research
Volume 25, 2008 - Issue 6
188
Views
11
CrossRef citations to date
0
Altmetric
Original Research

The Annual Activity Pattern of Djungarian Hamsters (Phodopus sungorus) Is Affected by Wheel‐Running Activity

&
Pages 905-922 | Received 03 Mar 2008, Accepted 09 Jun 2008, Published online: 07 Jul 2009

References

  • Anchordoquy H C, Lynch G R. Evidence of an annual rhythm in a small proportion of Siberian hamsters exposed to chronic short days. J. Biol. Rhythms 2000; 15: 122–125
  • Aschoff J. Exogenous and endogenous components in circadian rhythms. Cold. Spr. Harb. Symp. Quant. Biol. 1960; 25: 11–28
  • Bartness T J, Goldman B D. Peak duration of serum melatonin and short‐day responses in adult Siberian hamsters. Am. J. Physiol. 1988; 255: R812–R822
  • Boulos Z, Macchi M M. Season‐ and latitude‐dependent effects of simulated twilights on circadian entrainment. J. Biol. Rhythms 2005; 20: 132–144
  • Boulos Z, Macchi M, Terman M. Twilight transitions promote circadian entrainment to lengthening light‐dark cycles. Am. J. Physiol. 1996; 271: R813–R818
  • Boulos Z, Macchi M M, Terman M. Twilights widen the range of photic entrainment in hamsters. J. Biol. Rhythms 2002; 17: 353–363
  • Canguilhem B. External and endogenous control of body weight rhythm in the European hamster, Cricetus cricetus. Living in the cold, A Malan, B Canguilhem. Colloque INSERM/John Libbey Eurotext, London/Paris 1989; 25–32
  • Carter D S, Goldman B D. Antigonadal effects of timed melatonin infusion in pinealectomized male Djungarian hamsters (Phodopus sungorus sungorus): Duration is the critical parameter. Endocrinology 1983; 113: 1261–1267
  • Chiesa J J, Diez‐Noguera A, Cambras T. Effects of transient and continuous wheel running activity on the upper and lower limits of entrainment to light‐dark cycles in female hamsters. Chronobiol. Int. 2007; 24: 215–234
  • Daan S, Aschoff J. Circadian rhythms of locomotor activity in captive birds and mammals: Their variations with season and latitude. Oecologia 1975; 18: 269–316
  • Daan S, Albrecht U, Van Der Horst G T, Illnerova H, Roenneberg T, Wehr T A, Schwartz W J. Assembling a clock for all seasons: Are there M and E oscillators in the genes?. J. Biol. Rhythms 2001; 16: 105–116
  • Daan S, Beersma D GM, Spoelstra K. Dawn and dusk—specialisation of circadian system components for acceleration and deceleration in response to light?. Biological rhythms, K Honma, S Honma. Hokkaido University Press, Sapporo 2005; 59–72
  • Darrow J M, Goldman B D. Circadian regulation of pineal melatonin and reproduction in the Djungarian hamster. J. Biol. Rhythms 1985; 1: 39–54
  • Deboer T, Tobler I. Shortening of the photoperiod affects sleep distribution, EEG and cortical temperature in the Djungarian hamster. J. Comp. Physiol. A. 1996; 179: 483–492
  • Deboer T, Vyazovskiy V V, Tobler I. Long photoperiod restores the 24‐h rhythm of sleep and EEG slow‐wave activity in the Djungarian hamster (Phodopus sungorus). J. Biol. Rhythms 2000; 15: 429–436
  • Figala J, Hoffmann K, Goldau G. Zur Jahresperiodik beim Dsungarischen Zwerghamster Phodopus sungorus Pallas. Oecologia 1973; 12: 89–118
  • Flint W E. Die Zwerghamster der paläarktischen Fauna. 1966; 99, A. Ziemsen Verlag, Wittenberg Lutherstadt
  • Gattermann R, Johnston R E, Yigit N, Fritzsche P, Larimer S, Ozkurt S, Neumann K, Song Z, Colak E, Johnston J, McPhee M E. Golden hamsters are nocturnal in captivity but diurnal in nature. Biol. Lett. 2008; 4: 253–255
  • Hazlerigg D G, Ebling F J, Johnston J D. Photoperiod differentially regulates gene expression rhythms in the rostral and caudal SCN. Curr. Biol. 2005; 15: R449–R450
  • Heldmaier G, Steinlechner S. Seasonal control of energy requirements for thermoregulation in the Djungarian Hamster (Phodopus sungorus), living in natural photoperiod. J. Comp. Physiol. [B]. 1981; 142: 429–437
  • Hoffmann K. The influence of photoperiod and melatonin on testis size, body weight, and pelage colour in the Djungarian hamster (Phodopus sungorus). J. Comp. Physiol. 1973; 85: 267–282
  • Hut R A, Mrosovsky N, Daan S. Nonphotic entrainment in a diurnal mammal, the European ground squirrel (Spermophilus citellus). J. Biol. Rhythms 1999a; 14: 409–419
  • Hut R A, van Oort B E, Daan S. Natural entrainment without dawn and dusk: The case of the European ground squirrel (Spermophilus citellus). J. Biol. Rhythms 1999b; 14: 290–299
  • Jagota A, de la Iglesia H O, Schwartz W J. Morning and evening circadian oscillations in the suprachiasmatic nucleus in vitro. Nat. Neurosci. 2000; 3: 372–376
  • Johnston J D. Measuring seasonal time within the circadian system: Regulation of the suprachiasmatic nuclei by photoperiod. J. Neuroendocrinol. 2005; 17: 459–465
  • Lincoln G A, Andersson H, Loudon A. Clock genes in calendar cells as the basis of annual timekeeping in mammals—a unifying hypothesis. J. Endocrinol. 2003; 179: 1–13
  • Masson‐Pévet M, Naimi F, Canguilhem B, Saboureau M, Bonn D, Pevet P. Are the annual reproductive and body weight rhythms in the male European hamster (Cricetus cricetus) dependent upon a photoperiodically entrained circannual clock?. J. Pineal. Res. 1994; 17: 151–163
  • Monecke S, Wollnik F. European hamsters (Cricetus cricetus) show a transient phase of insensitivity to long photoperiods after gonadal regression. Biol. Reprod. 2004; 70: 1438–1443
  • Monecke S, Wollnik F. Seasonal variations in circadian rhythms coincide with a phase of sensitivity to short photoperiods in the European hamster. J. Comp. Physiol. [B]. 2005; 175: 167–183
  • Mrosovsky N. Locomotor activity and non‐photic influences on circadian clocks. Biol. Rev. 1996; 71: 343–367
  • Mrosovsky N. Masking: History, definitions, and measurement. Chronobiol. Int. 1999; 16: 415–429
  • Palchykova S, Deboer T, Tobler I. Seasonal aspects of sleep in the Djungarian hamster. BMC Neurosci. 2003; 4: 9
  • Pittendrigh C S, Daan S. A functional analysis of circadian pacemakers in nocturnal rodents. V. Pacemaker structure: a clock for all seasons. J. Comp. Physiol. [A]. 1976; 106: 333–355
  • Pratt B L, Goldman B D. Activity rhythms and photoperiodism of Syrian hamsters in a simulated burrow system. Physiol. Behav. 1986; 36: 83–89
  • Ralph M R, Mrosovsky N. Behavioral inhibition of circadian responses to light. J. Biol. Rhythms 1992; 7: 353–359
  • Ruby N F, Saran A, Kang T, Franken P, Heller H C. Siberian hamsters free run or become arrhythmic after a phase delay of the photocycle. Am. J. Physiol. 1996; 271: R881–R890
  • Saboureau M, Masson‐Pevet M, Canguilhem B, Pevet P. Circannual reproductive rhythm in the European hamster (Cricetus cricetus): Demonstration of the existence of an annual phase of sensitivity to short photoperiod. J. Pineal. Res. 1999; 26: 9–16
  • Schaap J, Meijer J H. Opposing effects of behavioural activity and light on neurons of the suprachiasmatic nucleus. Eur. J. Neurosci. 2001; 13: 1955–1962
  • Scherbarth F, Rozman J, Klingenspor M, Brabant G, Steinlechner S. Wheel running affects seasonal acclimatization of physiological and morphological traits in the Djungarian hamster (Phodopus sungorus). Am J Physiol Regul Integr Comp Physiol 2007; 293: R1368–R1375
  • Scherbarth F, Petri I, Steinlechner S. Effects of wheel running on photoperiodic responses of Djungarian hamsters (Phodopus sungorus). J Comp Physiol [B]. 2008; 178: 607–615
  • Sherwin C M. Voluntary wheel running: A review and novel interpretation. Anim. Behav. 1998; 56: 11–27
  • Sokolove P G, Bushell W N. The chi square periodogram: Its utility for analysis of circadian rhythms. J. Theor. Biol. 1978; 72: 131–160
  • Steinlechner S, Heldmaier G, Becker H. The seasonal cycle of body weight in the Djungarian hamster. Oecologia 1983; 60: 401–405
  • Steinlechner S, Jacobmeier B, Scherbarth F, Dernbach H, Kruse F, Albrecht U. Robust circadian rhythmicity of Per1 and Per2 mutant mice in constant light, and dynamics of Per1 and Per2 gene expression under long and short photoperiods. J. Biol. Rhythms 2002a; 17: 202–209
  • Steinlechner S, Stieglitz A, Ruf T. Djungarian hamsters: A species with a labile circadian pacemaker? Arrhythmicity under a light‐dark cycle induced by short light pulses. J. Biol. Rhythms 2002b; 17: 248–258
  • Touitou Y, Smolensky M H, Portaluppi F. Ethics, standards, and procedures of animal and human chronobiology research. Chronobiol. Int. 2006; 23: 1083–1096
  • Wollnik F, Breit A, Reinke D. Seasonal change in the temporal organization of wheel‐running activity of the European hamster. Cricetus cricetus. Naturwissenschaften. 1991; 78: 419–422
  • Wynne‐Edwards K E, Surov A V, Telitzina A Y. Differences in endogenous activity within the genus Phodopus. J. Mammal. 1999; 80: 855–865
  • Yamazaki S, Kerbeshian M C, Hocker C G, Block G D, Menaker M. Rhythmic properties of the hamster suprachiasmatic nucleus in vivo. J. Neurosci. 1998; 18: 10709–10723

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.