Publication Cover
Chronobiology International
The Journal of Biological and Medical Rhythm Research
Volume 33, 2016 - Issue 9
113
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

The circadecadal rhythm of oscillation of umbilical cord blood parameters correlates with geomagnetic activity – An analysis of long-term measurements (1999–2011)

, , , , , & show all
Pages 1136-1147 | Received 16 May 2016, Accepted 13 Jun 2016, Published online: 13 Jul 2016

References

  • Akyurekli C, Chan JY, Elmoazzen H,et al. (2014). Impact of ethnicity on human umbilical cord blood banking: A systematic review. Transfusion. 54:2122–27.
  • Al-Deghaither SY. (2015). Impact of maternal and neonatal factors on parameters of hematopoietic potential in umbilical cord blood. Saudi Med J. 36:704–12.
  • Asikainen T, Maliniemi V, Mursula K. (2010). Modeling the contributions of ring, tail, and magnetopause currents to the corrected Dst index. J Geophys Res Space Phys. 115.
  • Askari S, Miller J, Chrysler G, McCullough J. (2005). Impact of donor- and collection-related variables on product quality in ex utero cord blood banking. Transfusion. 45:189–94.
  • Babayev ES, Allahverdiyeva AA. (2007). Effects of geomagnetic activity variations on the physiological and psychological state of functionally healthy humans: Some results of Azerbaijani studies. Adv Space Res. 40:1941–51.
  • Ballen KK, Gluckman E, Broxmeyer HE. (2013). Umbilical cord blood transplantation: The first 25 years and beyond. Blood. 122:491–98.
  • Barnes FS, Greenebaum B. (2015). The effects of weak magnetic fields on radical pairs. Bioelectromagnetics. 36:45–54.
  • Bartsch C, Bartsch H, Seebald E, Kupper H, Mecke D. (2014). Modulation of pineal activity during the 23rd sunspot cycle: Melatonin rise during the ascending phase of the cycle is accompanied by an increase of the sympathetic tone. Indian J Exp Biol. 52:438–47.
  • Bartsch H, Bartsch C, Mecke D, Lippert TH. (2009). Seasonality of pineal melatonin production in the rat: Possible synchronization by the geomagnetic field. Chronobiol Int. 11:21–26.
  • Baudoux E, Beguin Y, Cornu G, et al. (1998). Circadian and seasonal variations of hematopoiesis in cord blood. Bone Marrow Transplant. 22:S12.
  • Bazalova O, Kvicalova M, Valkova T, et al. (2016). Cryptochrome 2 mediates directional magnetoreception in cockroaches. Proc Natl Acad Sci USA. 113:1660–5.
  • Bello OR, Rabiu AB, Yumoto K, Yizengaw E. (2014). Mean solar quiet daily variations in the earth’s magnetic field along East African longitudes. Adv Space Res. 54:283–9.
  • Bergiannaki JD, Paparrigopoulos TJ, Stefanis CN. (1996). Seasonal pattern of melatonin excretion in humans: Relationship to daylength variation rate and geomagnetic field fluctuations. Experientia. 52:253–8.
  • Bijou F, Ivanovic Z, Fizet D, et al. (2015). Neonatal sex and weight influence CD34(+) cell concentration in umbilical cord blood but not stromal cell-derived factor 1-3’A polymorphism. Cytotherapy. 17:68–72.
  • Binhi VN. (2002). Magnetobiology: Underlying physical problems: Academic Press.
  • Brix G, Strieth S, Strelczyk D, et al. (2008). Static magnetic fields affect capillary flow of red blood cells in striated skin muscle. Microcirculation. 15:15–26.
  • Brosnan SF, Holland RA, Kirschvink JL, et al. (2008). Bats use magnetite to detect the Earth’s magnetic field. PLoS ONE. 3:e1676.
  • Burch JB, Reif JS, Yost MG. (1999). Geomagnetic disturbances are associated with reduced nocturnal excretion of a melatonin metabolite in humans. Neurosci Lett. 266:209–12.
  • Cagnacci A, Elliott JA, Yen SS. (1992). Melatonin: A major regulator of the circadian rhythm of core temperature in humans. J Clin Endocrinol Metab. 75:447–52.
  • Cai J, Plenio MB. (2013). Chemical compass model for avian magnetoreception as a auantum coherent device. Phys Rev Lett. 111.
  • Cajochen C, Krauchi K, Wirz-Justice A. (2003). Role of melatonin in the regulation of human circadian rhythms and sleep. J Neuroendocrinol. 15:432–7.
  • Campbell WH. (1982). Annual and semiannual changes of the quiet daily variations (Sq) in the geomagnetic field at North American locations. J Geophys Res. 87:785.
  • Campbell WH. (1996a). Dst is not a pure ring-current index. Eos, Trans Am Geophys Union. 77:283.
  • Campbell WH. (1996b). Geomagnetic storms, the Dst ring-current myth and lognormal distributions. J Atmos Terr Phys. 58:1171–87.
  • Campbell WH. (2003). Introduction to geomagnetic fields. Cambridge, UK: Cambridge University Press.
  • Campbell WH. (2004). Failure of Dst index fields to represent a ring current. Space Weather. 2:n/a–n/a.
  • Chang WH-S, Chen L-T, Sun J-S, Lin F-H. (2004). Effect of pulse-burst electromagnetic field stimulation on osteoblast cell activities. Bioelectromagnetics. 25:457–65.
  • Cintolesi F, Ritz T, Kay CWM, et al. (2003). Anisotropic recombination of an immobilized photoinduced radical pair in a 50-μT magnetic field: A model avian photomagnetoreceptor. Chem Phys. 294:385–99.
  • AL Clúa de Gonzalez, WD Gonzalez, SLG Dutra, Tsurutani BT. (1993). Periodic variation in the geomagnetic activity: A study based on the Ap index. J Geophys Res. 98:9215.
  • Cornélissen G, Grambsch P, Sothern RB, et al. (2011). Congruent biospheric and solar-terrestrial cycles. J Appl Biomed. 9:63–102.
  • Cossarizza A, Monti D, Bersani F, et al. (1989). Extremely low frequency pulsed electromagnetic fields increase cell proliferation in lymphocytes from young and aged subjects. Biochem Biophys Res Commun. 160:692–8.
  • De Mattei M, Caruso A, Traina GC, et al. (1999). Correlation between pulsed electromagnetic fields exposure time and cell proliferation increase in human osteosarcoma cell lines and human normal osteoblast cells in vitro. Bioelectromagnetics. 20:177–82.
  • Dimitrova S. (2008a). Cardio-vascular homeostasis and changes in geomagnetic field, estimated by Dst-index. In Krawczyk A, Kubacki R, Wiak S, Lemos Antunes C, eds. Electromagnetic field, health and environment. Amsterdam, Netherlands: IOS Press, pp. 238–43.
  • Dimitrova S. (2008b). Different geomagnetic indices as an indicator for geo-effective solar storms and human physiological state. J Atmos Solar-Terr Phys. 70:420–7.
  • Dodson CA, Hore PJ, Wallace MI. (2013). A radical sense of direction: Signalling and mechanism in cryptochrome magnetoreception. Trends Biochem Sci. 38:435–46.
  • Dubrov AP. (1978). The geomagnetic field and life: Geomagnetobiology. New York, NY: Springer.
  • Dungey JW. (1961). Interplanetary magnetic field and the auroral zones. Phys Rev Lett. 6:47–8.
  • Echer E, Gonzalez WD, Guarnieri FL, et al. (2005). Introduction to space weather. Adv Space Res. 35:855–65.
  • Echer E, Gonzalez WD, Tsurutani BT, Gonzalez ALC. (2008). Interplanetary conditions causing intense geomagnetic storms (Dst ≤ −100 nT) during solar cycle 23 (1996–2006). J Geophys Res Space Phys. 113: n/a–n/a.
  • Eldjerou LK, Cogle CR, Rosenau EH, et al. (2015). Vitamin D effect on umbilical cord blood characteristics: A comparison between African Americans and Caucasians. Transfusion. 55:1766–71.
  • Ernst DA, Lohmann KJ. (2016). Effect of magnetic pulses on Caribbean spiny lobsters: Implications for magnetoreception. J Exp Biol.
  • Evans EW, Dodson CA, Maeda K, et al. (2013). Magnetic field effects in flavoproteins and related systems. Interface Focus. 3:20130037.
  • Finlay CC, Maus S, Beggan CD, et al. (2010). International geomagnetic reference field: The eleventh generation. Geophys J Int. 183:1216–30.
  • Foley LE, Gegear RJ, Reppert SM. (2011). Human cryptochrome exhibits light-dependent magnetosensitivity. Nat Commun. 2:356.
  • Gannong JL. (2012). Assessing the validity of station location assumptions made in the calculation of the geomagnetic disturbance index, Dst. Space Weather. doi: 10.1029/2011SW000731
  • Gegear RJ, Casselman A, Waddell S, Reppert SM. (2008). Cryptochrome mediates light-dependent magnetosensitivity in Drosophila. Nature. 454:1014–1018.
  • Gegear RJ, Foley LE, Casselman A, Reppert SM. (2010). Animal cryptochromes mediate magnetoreception by an unconventional photochemical mechanism. Nature. 463:804–07.
  • Goldstein ML, Matthaeus WH, Ambrosiano JJ. (1986). Acceleration of charged particles in magnetic reconnection: Solar flares, the magnetosphere, and solar wind. Geophys Res Lett. 13:205–8.
  • Gonzalez WD, Tsurutani BT, Gonzalez ALC, et al. (1989). Solar wind-magnetosphere coupling during intense magnetic storms (1978–1979). J Geophys Res. 94:8835.
  • Gupta JC, Malin SRC. (1972). Seasonal variations in the solar and lunar daily geomagnetic variations. Geophys J Int. 30:11–18.
  • Hathaway DH. (2015). The solar cycle. Living Rev Solar Phys. 12.
  • Hathaway DH, Suess ST. (2008). Solar cycle 23. In Balogh A, Lanzerotti LJ, Suess ST, eds. The heliosphere through the solar activity cycle. Berlin, Heidelberg, New York: Springer, pp. 21–38.
  • Hitchman AP, Lilley FEM, Campbell WH. (1998). The quiet daily variation in the total magnetic field: Global curves. Geophys Res Lett. 25:2007–10.
  • Iafolla MA, Tay J, Allan DS. (2014). Transplantation of umbilical cord blood-derived cells for novel indications in regenerative therapy or immune modulation: A scoping review of clinical studies. Biol Blood Marrow Transplant. 20:20–25.
  • Kamide Y, Chian Abraham C-L, eds. (2007). Handbook of the solar-terrestrial environment. New York, NY: Springer.
  • Karinen A, Mursula K. (2006). Correcting the Dst index: Consequences for absolute level and correlations. J Geophys Res. 111.
  • Kilcik A, Yurchyshyn VB, Abramenko V, et al. (2011) Maximum coronal mass ejection speed as an indicator of solar and geomagnetic activities. Astrophys J. 727:44.
  • Kirschvink JL. (1989). Magnetite biomineralization and geomagnetic sensitivity in higher animals: An update and recommendations for future study. Bioelectromagnetics. 10:239–59.
  • Kirschvink JL. (2001). Magnetite-based magnetoreception. Curr Opin Neurobiol. 11:462–7.
  • Kirschvink JL, Gould JL. (1981). Biogenic magnetite as a basis for magnetic field detection in animals. Biosystems. 13:181–201.
  • Kirschvink JL, Kobayashi-Kirschvink A, Diaz-Ricci JC, Kirschvink SJ. (1992). Magnetite in human tissues: A mechanism for the biological effects of weak ELF magnetic fields. Bioelectromagnetics. 13:101–13.
  • Kleimenova NG, Kozyreva OV, Breus TK, Rapoport SI. (2007). Pc1 geomagnetic pulsations as a potential hazard of the myocardial infarction. J Atmos Solar-Terr Phys. 69:1759–64.
  • Lednev VV. (1991). Possible mechanism for the influence of weak magnetic fields on biological systems. Bioelectromagnetics. 12:71–5.
  • Li F, Yuan Y, Guo Y, et al. (2015). Pulsed magnetic field accelerate proliferation and migration of cardiac microvascular endothelial cells. Bioelectromagnetics. 36:1–9.
  • Liboff AR. (2013). Why are living things sensitive to weak magnetic fields? Electromagn Biol Med. 33:241–5.
  • Liboff AR, Jenrow KA. (2000). New model for the avian magnetic compass. Bioelectromagnetics. 21:555–65.
  • Liu X, Gong Y, Xiong K, et al. (2013). Melatonin mediates protective effects on inflammatory response induced by interleukin-1 beta in human mesenchymal stem cells. J Pineal Res. 55:14–25.
  • Liu YD, Hu H, Wang R, et al. (2015). Plasma and magnetic field characteristics of solar coronal mass ejections in relation to geomagnetic storm intensity and variability. Astrophys J. 809:L34.
  • Lucas D, Battista M, Shi PA, et al. (2008). Mobilized hematopoietic stem cell yield depends on species-specific circadian timing. Cell Stem Cell. 3:364–6.
  • Mantri S, Rao EV, Jena PK, Mohapatra PC. (2016). Association of CD34+ and CD90+ stem cells of cord blood with neonatal factors: A cross-sectional study. Indian J Pediatr. 83:114–19.
  • Mattei MD, Caruso A, Pezzetti F, et al. (2009). Effects of pulsed electromagnetic fields on human articular chondrocyte proliferation. Connective Tissue Res. 42:269–79.
  • Mavromichalaki H, Papailiou M, Dimitrova S, et al. (2012). Space weather hazards and their impact on human cardio-health state parameters on Earth. Nat Hazards. 64:1447–59.
  • Mayaud P-N. (1972). The aa indices: A 100-year series characterizing the magnetic activity. J Geophys Res. 77:6870–4.
  • Mazzocchetti D, Berti AM, Sartini R, et al. (2014). Total nucleated cells as a sole predictor of distinct targets of hematopoietic potential (CD34+ cells) in cord blood units: The results of a large series analysis in autologous cord blood units. Transfusion. 54:1256–62.
  • Mazzoccoli G, Miscio G, Fontana A, et al. (2016). Time related variations in stem cell harvesting of umbilical cord blood. Sci Rep. 6:21404.
  • McLeod BR, Liboff AR. (1987). Cyclotron resonance in cell membranes: The theory of the mechanism. In Blank M et al., eds. Mechanistic approaches to interactions of electric and electromagnetic fields with living systems. Springer Science+Business Media New York, pp. 97–108.
  • McPherron RL, O’Brien TP (2001). Predicting geomagnetic activity: The Dst index. In Song P, Singer, HJ, and Siscoe GL, eds. Geophys. Monogr. Ser., vol. 125, AGU, pp. 339–345.
  • Menvielle M, Berthelier A. (1991). TheK-derived planetary indices: Description and availability. Rev Geophys. 29:415.
  • Mias C, Trouche E, Seguelas M-H, et al. (2008). Ex vivo pretreatment with melatonin improves survival, proangiogenic/mitogenic activity, and efficiency of mesenchymal stem cells injected into ischemic kidney. Stem Cells. 26:1749–57.
  • Munoz J, Shah N, Rezvani K, et al. (2014). Concise review: Umbilical cord blood transplantation: Past, present, and future. Stem Cells Transl Med. 3:1435–43.
  • Murray J, Farndale R. (1985). Modulation of collagen production in cultured fibroblasts by a low-frequency, pulsed magnetic field. BBA Gen Subj. 838:98–105.
  • Mursula K, Holappa L, Karinen A. (2008). Correct normalization of the Dst index. Astrophys Space Sci Trans. 4:41–5.
  • Mursula K, Holappa L, Karinen A. (2011). Uneven weighting of stations in the Dst index. J Atmos Solar-Terr Phys. 73:316–22.
  • Mursula K, Karinen A. (2005). Explaining and correcting the excessive semiannual variation in theDstindex. Geophys Res Lett. 32:n/a–n/a.
  • Nakagawa R, Watanabe T, Kawano Y, et al. (2004). Analysis of maternal and neonatal factors that influence the nucleated and CD34+ cell yield for cord blood banking. Transfusion. 44:262–7.
  • Niessner C, Denzau S, Stapput K, et al. (2013). Magnetoreception: Activated cryptochrome 1a concurs with magnetic orientation in birds. J R Soc Interface. 10:20130638–20130638.
  • Nunes RD, Zandavalli FM. (2015). Association between maternal and fetal factors and quality of cord blood as a source of stem cells. Revista Brasileira de Hematologia e Hemoterapia. 37:38–42.
  • Omori A, Manabe M, Kudo K, et al. (2010). Influence of obstetric factors on the yield of mononuclear cells, CD34+ cell count and volume of placental/umbilical cord blood. J Obstet Gynaecol Res. 36:52–7.
  • Onoyama S, Qiu LI, Low HP, et al. (2016). Prenatal maternal physical activity and stem cells in umbilical cord blood. Med Sci Sports Exerc. 48:82–9.
  • Page KM, Mendizabal A, Betz-Stablein B, et al. (2014). Optimizing donor selection for public cord blood banking: Influence of maternal, infant, and collection characteristics on cord blood unit quality. Transfusion. 54:340–52.
  • Papailiou M, Mavromichalaki H, Kudela K, et al. (2011). The effect of cosmic ray intensity variations and geomagnetic disturbances on the physiological state of aviators. Astrophys Space Sci Trans. 7:373–7.
  • Pedatella NM, Forbes JM, Richmond AD. (2011). Seasonal and longitudinal variations of the solar quiet (Sq) current system during solar minimum determined by CHAMP satellite magnetic field observations. J Geophys Res Space Phys. 116: n/a–n/a.
  • Philip J, Kushwaha N, Chatterjee T, Mallhi RS. (2015). Optimizing cord blood collections: Assessing the role of maternal and neonatal factors. Asian J Transfus Sci. 9:163–7.
  • Pope B, Hokin B, Grant R. (2014). Effect of maternal iron status on the number of CD34+ stem cells harvested from umbilical cord blood. Transfusion. 54:1876–80.
  • Pulkkinen TI, Palmroth M, Tanskanen EI, et al. (2007). Solar wind—magnetosphere coupling: A review of recent results. J Atmos Solar-Terr Phys. 69:256–64.
  • Qiu X-F, Li X-X, Chen Y, et al. (2012). Mobilisation of endothelial progenitor cells: One of the possible mechanisms involved in the chronic administration of melatonin preventing erectile dysfunction in diabetic rats. Asian J Androl. 14:481–6.
  • Ramirez P, Wagner JE, DeFor TE, et al. (2012). Factors predicting single-unit predominance after double umbilical cord blood transplantation. Bone Marrow Transplant. 47:799–803.
  • Rao DRK. (1972). Lunar and luni-solar variations of the geomagnetic field in the Indian region. Pure Appl Geophys PAGEOPH. 95:131–40.
  • Rastogi RG, Trivedi NB. (1970). Luni-solar tides in H at stations within the equatorial electrojet. Plane Space Sci. 18:367–77.
  • Sakai A, Suzuki K, Nakamura T, et al. (1991). Effects of pulsing electromagnetic fields on cultured cartilage cells. Int Orthopaedics. 15.
  • Scarfi MR, Lioi MB, Della Noce M, et al. (1997). Exposure to 100 Hz pulsed magnetic fields increases micronucleus frequency and cell proliferation in human lymphocytes. Bioelectrochem Bioenerg. 43:77–81.
  • Selvakumaran R, Maurya AK, Gokani SA, et al. (2015). Solar flares induced D-region ionospheric and geomagnetic perturbations. J Atmos Solar-Terr Phys. 123:102–12.
  • Selvamurugan N, Kwok S, Vasilov A,et al. (2007). Effects of BMP-2 and pulsed electromagnetic field (PEMF) on rat primary osteoblastic cell proliferation and gene expression. J Orthopaedic Res. 25:1213–120.
  • Servais S, Baudoux E, Brichard B, et al. (2015). Circadian and circannual variations in cord blood hematopoietic cell composition. Haematologica. 100:e32–34.
  • Skene DJ, Arendt J. (2006). Human circadian rhythms: Physiological and therapeutic relevance of light and melatonin. Ann Clin Biochem. 43:344–53.
  • Solves P, Perales A, Moraga R, et al. (2005). Maternal, neonatal and collection factors influencing the haematopoietic content of cord blood units. Acta Haematol. 113:241–46.
  • Sparrow RL, Cauchi JA, Ramadi LT, et al. (2002). Influence of mode of birth and collection on WBC yields of umbilical cord blood units. Transfusion. 42:210–15.
  • Spencer E, Patra S, Asikainen T. (2013). Magnetotail current contribution to the Dst Index Using the MT Index and the WINDMI model. Adv Space Res. 52:1974–86.
  • Thébault E, Finlay CC, Beggan CD, et al. (2015). International geomagnetic reference field: The 12th generation. Earth Planets Space. 67.
  • Torta JM, Marsal S, Curto JJ, Gaya-Piqué LR. (2010). Behaviour of the quiet-day geomagnetic variation at Livingston Island and variability of the S q focus position in the South American-Antarctic Peninsula region. Earth Planets Space. 62:297–307.
  • Tsai M-T, Li W-J, Tuan RS, Chang WH. (2009). Modulation of osteogenesis in human mesenchymal stem cells by specific pulsed electromagnetic field stimulation. J Orthopaedic Res. 27:1169–74.
  • Tsurita G, Ueno S, Tsuno NH, et al. (1999). Effects of exposure to repetitive pulsed magnetic stimulation on cell proliferation and expression of heat shock protein 70 in normal and malignant cells. Biochem Biophys Res Commun. 261:689–94.
  • Tuffet S, de Seze R, Moreau JM, Veyret B. (1993). Effects of a strong pulsed magnetic field on the proliferation of tumour cells in vitro. Bioelectrochem Bioenerg. 30:151–60.
  • Turner NE, Baker DN, Pulkkinen TI, McPherron RL. (2000). Evaluation of the tail current contribution to Dst. J Geophys Res Space Phys. 105:5431–39.
  • Verina T, Fatemi A, Johnston MV, Comi AM. (2013). Pluripotent possibilities: Human umbilical cord blood cell treatment after neonatal brain injury. Pediatr Neurol. 48:346–54.
  • Vink CB, Woodward JR. (2004). Effect of a weak magnetic field on the reaction between neutral free radicals in isotropic solution. J Am Chem Soc. 126:16730–1.
  • Volpe G, Santodirocco M, Di Mauro L, et al. (2011). Four phases of checks for exclusion of umbilical cord blood donors. Blood Transfus. 9:286–91.
  • Wagner JE, Gluckman E. (2010). Umbilical cord blood transplantation: The first 20 years. Semin Hematol. 47:3–12.
  • Wang HN, Xu RL, eds. (2002). Solar-terrestrial magnetic activity and space environment. Oxford, UK: Pergamon.
  • Wen SH, Zhao WL, Lin PY, Yang KL. (2012). Associations among birth weight, placental weight, gestational period and product quality indicators of umbilical cord blood units. Transfus Ampheresis Sci. 46:39–45.
  • Weydahl A, Sothern RB, Cornélissen G, Wetterberg L. (2000). Geomagnetic activity influences the melatonin secretion at latitude 70°N. Biomed Pharmacother. 55:s57–62.
  • Wiltschko R, Wiltschko W. (2014). Sensing magnetic directions in birds: Radical pair processes involving cryptochrome. Biosensors. 4:221–42.
  • Wing S, Ohtani S, Johnson J, et al. (2014). Field-aligned currents during the extreme solar minimum between the solar cycles 23 and 24. J Geophys Res Space Phys. 119:2466–75.
  • Wu S, Xie G, Wu J, et al. (2015). Influence of maternal, infant, and collection characteristics on high-quality cord blood units in Guangzhou Cord Blood Bank. Transfusion. 55:2158–67.
  • Xu C, Lv Y, Chen C, et al. (2014). Blue light-dependent phosphorylations of cryptochromes are affected by magnetic fields in Arabidopsis. Adv Space Res. 53:1118–24.
  • Yamazaki Y, Kosch MJ. (2014). Geomagnetic lunar and solar daily variations during the last 100 years. J Geophys Res Space Phys. 119:6732–44.
  • Yamazaki Y, Yumoto K, Cardinal MG, et al. (2011). An empirical model of the quiet daily geomagnetic field variation. J Geophys Res Space Phys. 116: n/a–n/a.
  • Yoshii T, Ahmad M, Helfrich-Förster C. (2009). Cryptochrome mediates light-dependent magnetosensitivity of Drosophila’s circadian clock. PLoS Biol. 7(4):e1000086.
  • Zenchenko TA, Poskotinova LV, Rekhtina AG, Zaslavskaya RM. (2010). Relation between microcirculation parameters and Pc3 geomagnetic pulsations. Biophysics. 55:646–51.
  • Zhao L, Fisk L. (2011). Understanding the behavior of the heliospheric magnetic field and the solar wind during the unusual solar minimum between cycles 23 and 24. Solar Physics. 274:379–97.
  • Zoltowski BD, Vaidya AT, Top D, et al. (2011). Structure of full-length Drosophila cryptochrome. Nature. 480:396–9.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.