Publication Cover
Chronobiology International
The Journal of Biological and Medical Rhythm Research
Volume 34, 2017 - Issue 6
74
Views
4
CrossRef citations to date
0
Altmetric
Short Communications

Distribution of PERIOD-immunoreactive neurons and temporal change of the immunoreactivity under long-day and short-day conditions in the larval brain of the flesh fly Sarcophaga similis

, & ORCID Icon
Pages 819-825 | Received 20 Jan 2017, Accepted 20 Mar 2017, Published online: 17 Apr 2017

References

  • Bünning E. (1936). Die endogene Tagesrhythmik als Grundlage der Photoperiodischen Reaktion. Ber Dtsch Bot Ges. 54:590–607.
  • Frankel G, Hsiao C. (1968). Morphological and endocrinological aspects of pupal diapause in a fleshfly Sarcophaga argyrostoma. J Insect Physiol. 14:707–18.
  • Goto SG. (2013). Roles of circadian clock genes in insect photoperiodism. Entomol Sci. 16:1–16.
  • Goto SG, Numata H. (2009a). Alteration of the pupal diapause program and regulation of larval duration by photoperiod in the flesh fly Sarcophaga similis Meade (Diptera: Sarcophagidae). Appl Entomol Zool. 44:603–9.
  • Goto SG, Numata H. (2009b). Possible involvement of distinct photoreceptors in the photoperiodic induction of diapause in the flesh fly Sarcophaga similis. J Insect Physiol. 55:401–07.
  • Ikeno T, Ishikawa K, Numata H, Goto SG. (2013). Circadian clock gene, Clock, is involved in the photoperiodic response of the bean bug Riptortus pedestris. Physiol Entomol. 38:157–62.
  • Ikeno T, Numata H, Goto SG. (2011a). Photoperiodic response requires mammalian-type cryptochrome in the bean bug Riptortus pedestris. Biochem Biophys Res Commun. 410:394–7.
  • Ikeno T, Numata H, Goto SG. (2011b). Circadian clock genes period and cycle regulate photoperiodic diapause in the bean bug Riptortus pedestris males. J Insect Physiol. 57:935–8.
  • Ikeno T, Tanaka SI, Numata H, Goto SG. (2010). Photoperiodic diapause under the control of circadian clock genes in an insect. BMC Biol. 8:116.
  • Kaneko M., Helfrich-Förster C, Hall JC. (1997). Spatial and temporal expression of the period and timeless genes in the developing nervous system of Drosophila: newly identified pacemaker candidates and novel features of clock gene product cycling. J Neurosci. 17:6745–60.
  • Koštál V, Závodská R, Denlinger D. (2009). Clock genes period and timeless are rhythmically expressed in brains of newly hatched, photosensitive larvae of the fly, Sarcophaga crassipalpis. J Insect Physiol. 55:408–14.
  • Meuti ME, Denlinger DL. (2013). Evolutionary links between circadian clocks and photoperiodic diapause in insects. Integr Comp Biol. 53:131–43.
  • Meuti ME, Stone M, Ikeno T, Denlinger DL. (2015). Functional circadian clock genes are essential for the overwintering diapause of the northern house mosquito, Culex pipiens. J Exp Biol. 218:412–22.
  • Muguruma F, Goto SG, Numata H, Shiga S. (2010). Effect of photoperiod on clock gene expression and subcellular distribution of PERIOD in the circadian clock neurons of the blow fly Protophormia terraenovae. Cell Tissue Res 340:497–507.
  • Mukai A, Goto SG. (2016). The clock gene period is essential for the photoperiodic response in the jewel wasp Nasonia vitripennis (Hymenoptera: Pteromalidae). Applied Entomol Zool. 51:185–94.
  • Nelson RJ, Denlinger DL, Somers DE. (2010). Photoperiodism: The Biological Calendar. Oxford: Oxford University Press.
  • Pittendrigh CS, Minis DH. (1964). The entrainment of circadian oscillations by light and their role as photoperiodic clocks. Am Nat. 98:261–94.
  • Sakamoto T, Uryu O, Tomioka K. (2009). The clock gene period plays an essential role in photoperiodic control of nymphal development in the cricket Modicogryllus siamensis. J Biol Rhythms. 24:379–90.
  • Saunders DS, 2002. Insect Clocks. 3rd edition. Amsterdam: Elsevier.
  • Shafer OT, Levine JD, Truman JW, Hall JC. (2004). Flies by night: Effects of changing day length on Drosophila’s circadian clock. Curr Biol. 14:424–32.
  • Shiga S, Numata H. (2009). Roles of PERIOD immunoreactive neurons in circadian rhythms and photoperiodism in the blow fly, Protophormia terraenovae. J Exp Biol. 212:867–77.
  • Tagaya J, Numata H, Goto SG. (2010). Sexual difference in the photoperiodic induction of pupal diapause in the flesh fly Sarcophaga similis. Entomol Sci. 13:311–9.
  • Tanaka M, Tahcibana S-I, Numata H. (2008). Sensitive stages for photoperiodic induction of pupal diapause in the flesh fly Sarcophaga similis (Meade) (Diptera: Sarcophagidae). Appl Entomol Zool. 43:403–7.
  • Tomioka K, Matsumoto A. (2010). A comparative view of insect circadian clock systems. Cell Mol Life Sci. 67:1397–406.
  • Urbanová V, Bazalová O, Vaněčková H, Dolezel D. (2016). Photoperiod regulates growth of male accessory glands through juvenile hormone signaling in the linden bug, Pyrrhocoris apterus. Insect Biochem Mol Biol. 70:184–90.
  • Vaz Nunes M, Saunders D. (1999). Photoperiodic time measurement in insects: A review of clock models. J Biol Rhythms. 14:84–104.
  • Závodská R, Šauman I, Sehnal F. (2003). Distribution of PER protein, pigment-dispersing hormone, prothoracicotropic hormone and eclosion hormone in the cephalic nervous system of insects. J Biol Rhythms. 18:106–22.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.