Publication Cover
Chronobiology International
The Journal of Biological and Medical Rhythm Research
Volume 37, 2020 - Issue 6
124
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Temporal flexibility in activity rhythms of a diurnal rodent, the ice rat (Otomys sloggetti)

Pages 824-835 | Received 31 Mar 2020, Accepted 10 Jun 2020, Published online: 07 Jul 2020

References

  • Barak O, Kronfeld-Schor N. 2013. Activity rhythms and masking response in the diurnal fat sand rat under laboratory conditions. Chronobiol Int. 30:1123–1134. https://doi.org/10.3109/07420528.2013.805337
  • Bennie JJ, Duffy JP, Inger R, Gaston KJ. 2014. Biogeography of time partitioning in mammals. Proc Natl Acad Sci U S A. 111:13727–13732. DOI: 10.1073/pnas.1216063110
  • Blanchong JA, McElhinny TL, Mahoney MM, Smale L. 1999. Nocturnal and diurnal rhythms in the unstriped nile rat. Arvicanthis Niloticus. J Biol Rhythms. 14:364–377. DOI: 10.1177/074873099129000777
  • Blanchong JA, Smale L. 2000. Temporal patterns of activity of the unstriped nile rat. Arvicanthis Niloticus. J Mamml. 81:595–599. https://doi.org/10.1644/1545-1542(2000)081<0595:TPOAOT>2.0.CO;2
  • Campi KL, Krubitzer L. 2010. Comparative studies of diurnal and nocturnal rodents: differences in lifestyle result in alterations in cortical field size and number. J Comp Neurol. 518:4491–4512. DOI: 10.1002/cne.22466
  • Challet E. 2007. Minireview: entrainment of the suprachiasmatic clockwork in diurnal and nocturnal mammals. https://doi.org/10.1210/en.2007-0804
  • Challet E, Pitrosky B, Sicard B, Malan A, Pevet P. 2002. Circadian organization in a diurnal rodent, Arvicanthis ansorgei Thomas 1910: chronotypes, responses to constant lighting conditions, and photoperiodic changes. J Biol Rhythms. 17:52–64. DOI: 10.1177/074873002129002339
  • Cohen R, Kronfeld-Schor N. 2006. Individual variability and photic entrainment of circadian rhythms in golden spiny mice. Physiol Behav. 87:563–574. DOI: 10.1016/j.physbeh.2005.12.010
  • Cohen R, Smale L, Kronfeld-Schor N. 2009. Plasticity of circadian activity and body temperature rhythms in golden spiny mice. Chronobiol Int. 26:430–446. DOI: 10.1080/07420520902820939
  • Gaskill BN, Rohr SA, Pajor EA, Lucas JR, Garner JP. 2009. Some like it hot: mouse temperature preferences in laboratory housing. Appl Anim Behav Sci. 116:279–285. https://doi.org/10.1016/j.applanim.2008.10.002
  • Golombek DA, Rosenstein RE. 2010. Physiology of circadian entrainment. Physiol Rev. 90:1063–1102. DOI: 10.1152/physrev.00009.2009
  • Gordon CJ. 1993. Twenty-four hour rhythms of selected ambient temperature in rat and hamster. Physiol Behav. 53:257–263. DOI: 10.1016/0031-9384(93)90202-q
  • Gutman R, Dayan T. 2005. Temporal partitioning: an experiment with two species of spiny mice. Ecology. 86:164–173. DOI: 10.1890/03-0369
  • Hagenauer MH, Lee TM. 2008. Circadian organization of the diurnal Caviomorph rodent,Octodon degus. Biol Rhythm Res. 39:269–289. doi:10.1111/j.1365-2826.2008
  • Haim A, Fairall N. 1987. Bioenergetics of an herbivorous rodent Otomys irroratus. Physiol Zool. 60:305–309. https://doi.org/10.1086/physzool.60.3.30162283
  • Hinze A. 2005. Social behaviour and activity patterns of the African ice rat Otomys sloggetti robertsi. In: Faculty of Science. University of Witwatersrand. PhD thesis.
  • Hinze A, Pillay N. 2006. Life in an African Alpine habitat: diurnal activity patterns of the ice rat Otomys sloggetti. Arct Antarct Alp Res. 38:540–546. https://doi.org/10.1657/1523-0430(2006)38[540:LIAAAH]2.0.CO;2
  • Hinze A, Rymer TL, Pillay N. 2013. Spatial dichotomy of sociality in the African ice rat. J Zool. 290:208–214. https://doi.org/10.1111/jzo.12028
  • Hut RA, Kronfeld-Schor N, van der Vinne V, De la Iglesia H. 2012. In search of a temporal niche: environmental factors. Prog Brain Res. 199:281–304. DOI: 10.1016/B978-0-444-59427-3.00017-4
  • Ikeda T, Uchida K, Matsuura Y, Takahashi H, Yoshida T, Kaji K, Koizumi I. 2016. Seasonal and diel activity patterns of eight sympatric mammals in Northern Japan revealed by an intensive camera-trap survey. PLoS One. 11:e0163602. https://doi.org/10.1371/journal.pone.0163602
  • Johnson RA, Mitchell GS. 2003. Exercise-induced changes in hippocampal brain-derived neurotrophic factor and neurotrophin-3: effects of rat strain. Brain Res. 983:108–114. DOI: 10.1016/s0006-8993(03)03039-7
  • Jones LC, Bellingham WP, Ward LC. 1990. Sex differences in voluntary locomotor activity of food-restricted and ad-libitum fed rats. Implications for the maintenance of a body weight set-point. Comp Biochem Physiol. 96A:287–290. DOI: 10.1016/0300-9629(90)90694-n
  • Joshi S, Pillay N. 2018. Is wheel running a re-directed stereotypic behaviour in striped mice Rhabdomys dilectus? Appl Anim Behav Sci. 204:113–121. DOI: 10.1016/j.applanim.2018.04.011
  • Kas MJH, Edgar DM. 1998. Crepuscular rhythms of EEG sleep-wake in a hystricomorph rodent. Octodon Degus. J Biol Rhythms. 13:9–17. https://doi.org/10.1177/074873098128999871
  • Kas MJH, Edgar DM. 1999. A non-photic stimulus inverts the diurnal-nocturnal phase preference in Ocotodon degus. J Neurosci. 19:328–333. DOI: 10.1523/JNEUROSCI.19-01-00328.1999
  • Kas MJH, Edgar DM. 2001. Scheduled voluntary wheel running activity modulateds free-running circadian body temperature rhythms in Octodon degus. J Biol Rhythms. 16:66–75. DOI: 10.1177/074873040101600108
  • Katona C, Smale L. 1997. Wheel-running rhythms in Arvicanthis niloticus. Physiol Behav. 61:365–372. https://doi.org/10.1016/S0031-9384(96)00407-6
  • Konhilas JP, Chen H, Luczak E, McKee LA, Regan J, Watson PA, Stauffer BL, Khalpey ZI, McKinsey TA, Horn T, et al. 2015. Diet and sex modify exercise and cardiac adaptation in the mouse. Am J Physiol Heart Circ Physiol. 308:H135–145. https://doi.org/10.1152/ajpheart.00532.2014
  • Kronfeld-Schor N, Dayan T. 2003. Partitioning of time as an ecological resource. Annu Rev Ecol Evol Syst. 34:153–181. https://doi.org/10.1146/annurev.ecolsys.34.011802.132435
  • Kronfeld-Schor N, Dayan T. 2008. Activity patterns of rodents: the physiological ecology of biological rhythms. Biol Rhythm Res. 39:193–211. https://doi.org/10.1080/09291010701683268
  • Levy O, Dayan T, Porter WP, Kronfeld-Schor N. 2019. Time and ecological resilience: can diurnal animals compensate for climate change by shifting to nocturnal activity? Ecol Monogr. 89:e01334. https://doi.org/10.1002/ecm.1334
  • Mahoney M, Bult A, Smale L. 2001. Phase response curve light-induced Fos expression in the suprachiasmatic nucleus and adjacent hypothalamus of Arvicanthis niloticus. J Biol Rhythms. 16:149–162. DOI: 10.1177/074873001129001854
  • Manzanares G, Brito-da-Silva G, Gandra PG. 2018. Voluntary wheel running: patterns and physiological effects in mice. Braz J Med Biol Res. 52:e7830. DOI: 10.1590/1414-431X20187830
  • Meijer JH, Robbers Y. 2014. Wheel running in the wild. Proceedings of the Royal Society B: Biological Sciences 281: 20140210. http://dx.doi.org/10.1098/rspb.2014.0210.
  • Monadjem A, Taylor PJ, Denys C, Cotterill FPD. 2015. Rodents of the sub-Saharan Africa. A biogeographic adn taxonomic synthesis. Berlin (Boston): De Gruyter.
  • Nixon JP, Smale L. 2004. Individual differences in wheel-running rhythms are related to temporal and spatial patterns of activation of orexin A and B cells in a diurnal rodent (Arvicanthis niloticus). Neuroscience. 127:25–34. DOI: 10.1016/j.neuroscience.2004.04.052
  • Novak CM, Burghardt PR, Levine JA. 2012. The use of a running wheel to measure activity in rodents: relationship to energy balance, general activity, and reward. Neurosci Biobehav Rev. 36:1001–1014. DOI: 10.1016/j.neuroscience.2004.04.052
  • Packer WC. 1980. Nest-building and activity patterns in four sympatric rodent species. S Afr J Zool. 15:50–55. https://doi.org/10.1080/02541858.1980.11447683
  • Portaluppi F, Smolensky MH, Touitou Y. 2010. Ethics and methods for biologicl rhythm research on animals and human beings. Chronobiol Int. 27:1911–1929. DOI: 10.3109/07420528.2010.516381
  • Ramanathan C, Stowie A, Smale L, Nunez AA. 2010. Phase preference for the display of activity is associated with the phase of extra-suprachiasmatic nucleus oscillators within and between species. Neuroscience. 170:758–772. DOI: 10.1016/j.neuroscience.2010.07.053
  • Redlin U, Hattar S, Mrosovsky N. 2005. The circadian Clock mutant mouse: impaired masking response to light. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 191:51–59. DOI: 10.1007/s00359-004-0570-z
  • Redlin U, Mrosovsky N. 2004. Nocturnal activity in a diurnal rodent (Arvicanthis niloticus): the importance of masking. J Biol Rhythms. 19:58–67. DOI: 10.1177/0748730403260371
  • Refinetti R. 1996. Rhythms of body temeprature and temperature selection are out of phase in a diurnal rodent, Octodon degus. Physiol Behav. 60:959–961. DOI: 10.1016/0031-9384(96)00147-3
  • Refinetti R. 2008. The diversity of temporal niches in mammals. Biol Rhythm Res. 39:173–192. https://doi.org/10.1080/09291010701682690
  • Richter SH, Gass P, Fuss J. 2014. Resting is rusting: a critical view on rodent wheel-running behavior. Neuroscientist. 20:313–325. https://doi.org/10.1177/1073858413516798
  • Richter TA. 1997. Does the southern African ice rat (Otomys sloggetti) show morphological adaptation to cold? J Zool Lond. 242:384–387. https://doi.org/10.1111/j.1469-7998.1997.tb05810.x
  • Richter TA, Webb PI, Skinner JD. 1997. Limits to the distribution of the southern African Ice rat (Otomys sloggetti): thermal physiology or competitive exclusion? Funct Ecol. 11:240–246. https://doi.org/10.1046/j.1365-2435.1997.00078.x
  • Roll U, Dayan T, Kronfeld-Schor N. 2006. On the role of phylogeny in determining activity patterns of rodents. Evol Ecol. 20:479–490. https://doi.org/10.1007/s10682-006-0015-y
  • Rymer TL, Kinahan AA, Pillay N. 2007. Fur characteristics of the African ice rat Otomys sloggetti robertsi: modifications for an alpine existence. J Therm Biol. 32:428–432. doi:10.1016/j.jtherbio.2007.08.003
  • Shkolnik A. 1971. Diurnal activity in a small desert rodent. Int J Biometeorol. 15:115–120. https://doi.org/10.1007/BF01803884
  • Shuai L-Y, Ren C-L, Cao C, Song Y-L, Zeng Z-G. 2014. Shifts in activity patterns of Microtus gregalis: a role of competition or temperature? J Mammal. 95:960–967. https://doi.org/10.1644/13-MAMM-A-303
  • Smale L, Castleberry C, Nunez AA. 2001. Fos rhythms in the hypothalamus of Rattus and Arvicanthis that exhibit nocturnal and diurnal patterns of rhythmicity. Brain Res. 899:101–105. DOI: 10.1016/s0006-8993(01)02205-3
  • Tachinardi P, Bicudo JE, Oda GA, Valentinuzzi VS. 2014. Rhythmic 24 h variation of core body temperature and locomotor activity in a subterranean rodent (Ctenomys aff. knighti), the tuco-tuco. PLoS One. 9:e85674. DOI: 10.1371/journal.pone.0085674
  • Tal-Krivisky K, Kronfeld-Schor N, Einat H. 2015. Voluntary exercise enhances activity rhythms and ameliorates anxiety- and depression-like behaviors in the sand rat model of circadian rhythm-related mood changes. Physiol Behav. 151:441–447. DOI: 10.1016/j.physbeh.2015.08.002
  • Tomotani BM, Flores DE, Tachinardi P, Paliza JD, Oda GA, Valentinuzzi VS. 2012. Field and laboratory studies provide insights into the meaning of day-time activity in a subterranean rodent (Ctenomys aff. knighti), the tuco-tuco. PLoS One. 7:e37918. DOI: 10.1371/journal.pone.0037918
  • Valentinuzzi VS, Oda GA, Araujo JF, Ralph MR. 2009. Circadian pattern of wheel-running activity of a South American subterranean rodent (Ctenomys cf knightii). Chronobiol Int. 26:14–27. DOI: 10.1080/07420520802686331
  • Van Praag H, Kempermann G, Gage FH. 1999. Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nature Neurosci. 2:266–270. https://doi.org/10.1038/6368
  • Vermeulen HC, Nel JAJ. 1988. The bush Karoo rat Otomys unisulcatus on the Cape West coast. SAfrJZool. 23:103–111. https://doi.org/10.1080/02541858.1988.11448085
  • Weinert D, Weinandy R, Gattermann R. 2007. Photic and non-photic effects on the daily activity pattern of Mongolian gerbils. Physiol Behav. 90:325–333. DOI: 10.1016/j.physbeh.2006.09.019
  • Willmer P, Stone G, Johnston I. 2000. Environmental physiology of animals. Parice (France): Blackwell Science Ltd.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.