Publication Cover
Chronobiology International
The Journal of Biological and Medical Rhythm Research
Volume 40, 2023 - Issue 7
197
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Chronic exposure to dim artificial light disrupts the daily rhythm in mitochondrial respiration in mouse suprachiasmatic nucleus

, &
Pages 938-951 | Received 05 Dec 2022, Accepted 10 Jul 2023, Published online: 24 Jul 2023

References

  • Albrecht U, Sun ZS, Eichele G, Lee CC. 1997. A differential response of two putative mammalian circadian regulators, mper1and mper2, to light. Cell. 91:1055–1064. doi:10.1016/S0092-8674(00)80495-X.
  • Andrews JL, Zhang X, McCarthy JJ, McDearmon EL, Hornberger TA, Russell B, Campbell KS, Arbogast S, Reid MB, Walker JR. 2010. CLOCK and BMAL1 regulate MyoD and are necessary for maintenance of skeletal muscle phenotype and function. Proc Natl Acad Sci USA. 107:19090–19095. doi:10.1073/pnas.1014523107.
  • Asher G, Gatfield D, Stratmann M, Reinke H, Dibner C, Kreppel F, Mostoslavsky R, Alt FW, Schibler U. 2008. SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell. 134:317–328. doi:10.1016/j.cell.2008.06.050.
  • Berman SB, Hastings TG. 1999. Dopamine oxidation alters mitochondrial respiration and induces permeability transition in brain mitochondria: Implications for Parkinson’s disease. J Neurochem. 73:1127–1137. doi:10.1046/j.1471-4159.1999.0731127.x.
  • Bose HS, Lingappa VR, Miller WL. 2002. Rapid regulation of steroidogenesis by mitochondrial protein import. Nature. 417:87–91. doi:10.1038/417087a.
  • Bray MS, Shaw CA, Moore MWS, Garcia RAP, Zanquetta MM, Durgan DJ, Jeong WJ, Tsai J-Y, Bugger H, Zhang D. 2008. Disruption of the circadian clock within the cardiomyocyte influences myocardial contractile function, metabolism, and gene expression. Am J Physiol Heart Circ Physiol. 294:H1036–H1047. doi:10.1152/ajpheart.01291.2007.
  • Chan DW, Chen BP-C, Prithivirajsingh S, Kurimasa A, Story MD, Qin J, Chen DJ. 2002. Autophosphorylation of the DNA-dependent protein kinase catalytic subunit is required for rejoining of DNA double-strand breaks. Genes Dev. 16:2333–2338. doi:10.1101/gad.1015202.
  • Chiesa JJ, Cambras T, Carpentieri ÁR, Díez-Noguera A. 2010. Arrhythmic rats after SCN lesions and constant light differ in short time scale regulation of locomotor activity. J Biol Rhythms. 25:37–46. doi:10.1177/0748730409352843.
  • Claustrat B, Valatx J-L, Harthe C, Brun J. 2008. Effect of constant light on prolactin and corticosterone rhythms evaluated using a noninvasive urine sampling protocol in the rat. Horm Metab Res. 40:398–403. doi:10.1055/s-2008-1065330.
  • Coleman G, Canal MM. 2017. Postnatal light effects on pup stress axis development are independent of maternal behavior. Front Neurosci. 11:46. doi:10.3389/fnins.2017.00046.
  • Comas M, Beersma DGM, Spoelstra K, Daan S. 2006. Phase and period responses of the circadian system of mice (Mus musculus) to light stimuli of different duration. J Biol Rhythms. 21:362–372. doi:10.1177/0748730406292446.
  • Coomans CP, van den Berg SAA, Houben T, van Klinken J, van den Berg R, Pronk ACM, Havekes LM, Romijn JA, van Dijk KW, Biermasz NR. 2013. Detrimental effects of constant light exposure and high‐fat diet on circadian energy metabolism and insulin sensitivity. FASEB J. 27:1721–1732. doi:10.1096/fj.12-210898.
  • Dauchy RT, Dauchy EM, Tirrell RP, Hill CR, Davidson LK, Greene MW, Tirrell PC, Wu J, Sauer LA, Blask DE. 2010. Dark-phase light contamination disrupts circadian rhythms in plasma measures of endocrine physiology and metabolism in rats. Comp Med. 60:348–356.
  • de Goede P, Wüst RCI, Schomakers BV, Denis S, Vaz FM, Pras‐Raves ML, van Weeghel M, Yi C, Kalsbeek A, Houtkooper RH. 2022. Time‐restricted feeding during the inactive phase abolishes the daily rhythm in mitochondrial respiration in rat skeletal muscle. FASEB J. 36:e22133. doi:10.1096/fj.202100707R.
  • Depres-Brummer P, Levi F, Metzger G, Touitou Y. 1995. Light-induced suppression of the rat circadian system. Am J Physiol Regul Integr Comp Physiol. 268:R1111–R1116. doi:10.1152/ajpregu.1995.268.5.R1111.
  • Do MTH, Yau K-W. 2010. Intrinsically photosensitive retinal ganglion cells. Physiol Rev. 90:1547–1581. doi:10.1152/physrev.00013.2010.
  • Du J, Wang Y, Hunter R, Wei Y, Blumenthal R, Falke C, Khairova R, Zhou R, Yuan P, Machado-Vieira R, et al. 2009. Dynamic regulation of mitochondrial function by glucocorticoids. Proc Natl Acad Sci. 106:3543–3548. doi:10.1073/pnas.0812671106.
  • Fonken LK, Finy MS, Walton JC, Weil ZM, Workman JL, Ross J, Nelson RJ. 2009. Influence of light at night on murine anxiety-and depressive-like responses. Behav Brain Res. 205:349–354. doi:10.1016/j.bbr.2009.07.001.
  • Fonken LK, Workman JL, Walton JC, Weil ZM, Morris JS, Haim A, Nelson RJ. 2010. Light at night increases body mass by shifting the time of food intake. Proc Natl Acad Sci USA. 107:18664–18669. doi:10.1073/pnas.1008734107.
  • Hadsell DL, Olea W, Wei J, Fiorotto ML, Matsunami RK, Engler DA, Collier RJ. 2011. Developmental regulation of mitochondrial biogenesis and function in the mouse mammary gland during a prolonged lactation cycle. Physiol Genomics. 43:271–285. doi:10.1152/physiolgenomics.00133.2010.
  • Isobe Y, Hida H, Nishino H. 2011. Circadian rhythm of metabolic oscillation in suprachiasmatic nucleus depends on the mitochondrial oxidation state, reflected by cytochrome C oxidase and lactate dehydrogenase. J Neurosci Res. 89:929–935. doi:10.1002/jnr.22609.
  • Jacobi D, Liu S, Burkewitz K, Kory N, Knudsen NH, Alexander RK, Unluturk U, Li X, Kong X, Hyde AL. 2015. Hepatic Bmal1 regulates rhythmic mitochondrial dynamics and promotes metabolic fitness. Cell Metab. 22:709–720. doi:10.1016/j.cmet.2015.08.006.
  • Jordan SD, Kriebs A, Vaughan M, Duglan D, Fan W, Henriksson E, Huber A-L, Papp SJ, Nguyen M, Afetian M. 2017. CRY1/2 selectively repress PPARδ and limit exercise capacity. Cell Metab. 26:243–255. doi:10.1016/j.cmet.2017.06.002.
  • Kumar D, Singaravel M. 2014. Phase and period responses to short light pulses in a wild diurnal rodent, funambulus pennanti. Chronobiol Int. 31:320–327. doi:10.3109/07420528.2013.851084.
  • Kumar D, Soni SK, Kronfeld-Schor N, Singaravel M. 2020. Wheel-running activity rhythms and masking responses in the diurnal palm squirrel, funambulus pennantii. Chronobiol Int. 37:1693–1708. doi:10.1080/07420528.2020.1826959.
  • Li Y, Androulakis IP. 2021. Light entrainment of the SCN circadian clock and implications for personalized alterations of corticosterone rhythms in shift work and jet lag. Sci Rep. 11:17929. doi:10.1038/s41598-021-97019-7.
  • Longo VD, Panda S. 2016. Fasting, circadian rhythms, and time-restricted feeding in healthy lifespan. Cell Metab. 23:1048–1059. doi:10.1016/j.cmet.2016.06.001.
  • Lowry O, Rosebrough N, Farr AL, Randall R. 1951. Protein measurement with the Folin phenol reagent. J Biol Chem. 193:265–275. doi:10.1016/S0021-9258(19)52451-6.
  • Mambo E, Gao X, Cohen Y, Guo Z, Talalay P, Sidransky D. 2003. Electrophile and oxidant damage of mitochondrial DNA leading to rapid evolution of homoplasmic mutations. Proc Natl Acad Sci USA. 100:1838–1843. doi:10.1073/pnas.0437910100.
  • Mauri S, Favaro M, Bernardo G, Mazzotta GM, Ziviani E. 2022. Mitochondrial autophagy in the sleeping brain. Front Cell Dev Biol. 10. doi:10.3389/fcell.2022.956394.
  • Mohawk JA, Pargament JM, Lee TM. 2007. Circadian dependence of corticosterone release to light exposure in the rat. Physiol Behav. 92:800–806. doi:10.1016/j.physbeh.2007.06.009.
  • Nakahata Y, Kaluzova M, Grimaldi B, Sahar S, Hirayama J, Chen D, Guarente LP, Sassone-Corsi P. 2008. The NAD±dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell. 134:329–340. doi:10.1016/j.cell.2008.07.002.
  • Nelson W. 1979. Methods for cosinor-rhythmometry. Chronobiologia. 6:305–323.
  • Neufeld-Cohen A, Robles MS, Aviram R, Manella G, Adamovich Y, Ladeuix B, Nir D, Rousso-Noori L, Kuperman Y, Golik M. 2016. Circadian control of oscillations in mitochondrial rate-limiting enzymes and nutrient utilization by PERIOD proteins. Proc Natl Acad Sci USA. 113:E1673–E1682. doi:10.1073/pnas.1519650113.
  • Panda S, Antoch MP, Miller BH, Su AI, Schook AB, Straume M, Schultz PG, Kay SA, Takahashi JS, Hogenesch JB. 2002. Coordinated transcription of key pathways in the mouse by the circadian clock. Cell. 109:307–320. doi:10.1016/S0092-8674(02)00722-5.
  • Peek CB, Affinati AH, Ramsey KM, Kuo H-Y, Yu W, Sena LA, Ilkayeva O, Marcheva B, Kobayashi Y, Omura C. 2013. Circadian clock NAD+ cycle drives mitochondrial oxidative metabolism in mice. Science. 342:1243417. doi:10.1126/science.1243417.
  • Portaluppi F, Smolensky MH, Touitou Y. 2010. Ethics and methods for biological rhythm research on animals and human beings. Chronobiol Int. 27:1911–1929. doi:10.3109/07420528.2010.516381.
  • Rabinovich-Nikitin I, Rasouli M, Reitz CJ, Posen I, Margulets V, Dhingra R, Khatua TN, Thliveris JA, Martino TA, Kirshenbaum LA. 2021. Mitochondrial autophagy and cell survival is regulated by the circadian Clock gene in cardiac myocytes during ischemic stress. Autophagy. 17:3794–3812. doi:10.1080/15548627.202.
  • Rajput P, Krishnamurthy S. 2022. Standardization and validation of novel ex-vivo method for mitochondrial bioenergetics using mitochondrial modulators. J Pharmacol Toxicol Methods. 119:107209. doi:10.1016/j.vascn.2022.107209.
  • Refinetti R, Cornélissen G, Halberg F. 2007. Procedures for numerical analysis of circadian rhythms. Biol Rhythm Res. 38:275–325. doi:10.1080/09291010600903692.
  • Richardson RB, Mailloux RJ. 2023. Mitochondria need their sleep: redox, bioenergetics, and temperature regulation of circadian rhythms and the role of cysteine-mediated redox signaling, uncoupling proteins, and substrate cycles. Antioxidants. 12:674. doi:10.3390/antiox12030674.
  • Samaiya PK, Krishnamurthy S. 2015. Characterization of mitochondrial bioenergetics in neonatal anoxic model of rats. J Bioenerg Biomembr. 47:217–222. doi:10.1007/s10863-015-9603-2.
  • Schmitt K, Grimm A, Dallmann R, Oettinghaus B, Restelli LM, Witzig M, Ishihara N, Mihara K, Ripperger JA, Albrecht U. 2018. Circadian control of DRP1 activity regulates mitochondrial dynamics and bioenergetics. Cell Metab. 27:657–666. doi:10.1016/j.cmet.2018.01.011.
  • Simon N, Papa K, Vidal J, Boulamery A, Bruguerolle B. 2003. Circadian rhythms of oxidative phosphorylation: Effects of rotenone and melatonin on isolated rat brain mitochondria. Chronobiol Int. 20:451–461. doi:10.1081/CBI-120021385.
  • Stuart JA, Brown MF. 2006. Mitochondrial DNA maintenance and bioenergetics. Biochimica et Biophysica Acta (BBA)-Bioenergetics. 1757:79–89. doi:10.1016/j.bbabio.2006.01.003.
  • Tapia-Osorio A, Salgado-Delgado R, Angeles-Castellanos M, Escobar C. 2013. Disruption of circadian rhythms due to chronic constant light leads to depressive and anxiety-like behaviors in the rat. Behav Brain Res. 252:1–9. doi:10.1016/j.bbr.2013.05.028.
  • Tchekalarova J, Stoynova T, Ilieva K, Mitreva R, Atanasova M. 2018. Agomelatine treatment corrects symptoms of depression and anxiety by restoring the disrupted melatonin circadian rhythms of rats exposed to chronic constant light. Pharmacol Biochem Behav. 171:1–9. doi:10.1016/j.pbb.2018.05.016.
  • Tei H, Okamura H, Shigeyoshi Y, Fukuhara C, Ozawa R, Hirose M, Sakaki Y. 1997. Circadian oscillation of a mammalian homologue of the Drosophila period gene. Nature. 389:512–516. doi:10.1038/39086.
  • van Moorsel D, Hansen J, Havekes B, Scheer FAJL, Jörgensen JA, Hoeks J, Schrauwen-Hinderling VB, Duez H, Lefebvre P, Schaper NC. 2016. Demonstrationof a day-night rhythm in human skeletal muscle oxidative capacity. Mol Metab. 5:635–645. doi:10.1016/j.molmet.2016.06.012.
  • Woldt E, Sebti Y, Solt LA, Duhem C, Lancel S, Eeckhoute J, Hesselink MKC, Paquet C, Delhaye S, Shin Y. 2013. Rev-erb-α modulates skeletal muscle oxidative capacity by regulating mitochondrial biogenesis and autophagy. Nat Med. 19:1039–1046. doi:10.1038/nm.3213.
  • Woodward CJH, Emery PW. 1987. Determination of plasma corticosterone using high-performance liquid chromatography. J Chromatogr B Biomed Sci Appl. 419:280–284. doi:10.1016/0378-4347(87)80287-6.
  • Yamazaki S, Numano R, Abe M, Hida A, Takahashi R, Ueda M, Block GD, Sakaki Y, Menaker M, Tei H. 2000. Resetting central and peripheral circadian oscillators in transgenic rats. Science. 288:682–685. doi:10.1126/science.288.5466.682.
  • Yoo S-H, Yamazaki S, Lowrey PL, Shimomura K, Ko CH, Buhr ED, Siepka SM, Hong H-K, Oh WJ, Yoo OJ. 2004. PERIOD2: LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. Proc Natl Acad Sci USA. 101:5339–5346. doi:10.1073/pnas.0308709101.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.