1,059
Views
0
CrossRef citations to date
0
Altmetric
Psychiatry

Selecting, implementing and evaluating control and placebo conditions in light therapy and light-based interventions

ORCID Icon
Article: 2298875 | Received 21 Sep 2023, Accepted 20 Dec 2023, Published online: 08 Feb 2024

References

  • Lam RW, Levitt AJ, Levitan RD, et al. Efficacy of bright light treatment, fluoxetine, and the combination in patients with nonseasonal major depressive disorder: a randomized clinical trial. JAMA Psychiatry. 2016;73(1):1–10. doi: 10.1001/jamapsychiatry.2015.2235.
  • Hirakawa H, Terao T, Muronaga M, et al. Adjunctive bright light therapy for treating bipolar depression: a systematic review and meta-analysis of randomized controlled trials. Brain Behav. 2020;10(12):e01876. doi: 10.1002/brb3.1876.
  • Penders TM, Stanciu CN, Schoemann AM, et al. Bright light therapy as augmentation of pharmacotherapy for treatment of depression: a systematic review and meta-analysis. Prim Care Companion CNS Disord. 2016;18(5). doi: 10.4088/PCC.15r01906.
  • Pail G, Huf W, Pjrek E, et al. Bright-light therapy in the treatment of mood disorders. Neuropsychobiology. 2011;64(3):152–162. doi: 10.1159/000328950.
  • van Maanen A, Meijer AM, van der Heijden KB, et al. The effects of light therapy on sleep problems: a systematic review and meta-analysis. Sleep Med Rev. 2016;29:52–62. doi: 10.1016/j.smrv.2015.08.009.
  • Beauchamp MT, Lundgren JD. A systematic review of bright light therapy for eating disorders. Prim Care Companion CNS Disord. 2016;18(5). doi: 10.4088/PCC.16r02008.
  • Nussbaumer-Streit B, Forneris CA, Morgan LC, et al. Light therapy for preventing seasonal affective disorder. Cochrane Database Syst Rev. 2019;6(6):CD011271.
  • Do MTH. Melanopsin and the intrinsically photosensitive retinal ganglion cells: biophysics to behavior. Neuron. 2019;104(2):205–226. doi: 10.1016/j.neuron.2019.07.016.
  • Provencio I, Rodriguez IR, Jiang G, et al. A novel human opsin in the inner retina. J Neurosci. 2000;20(2):600–605. doi: 10.1523/JNEUROSCI.20-02-00600.2000.
  • Rollag MD, Berson DM, Provencio I. Melanopsin, ganglion-cell photoreceptors, and mammalian photoentrainment. J Biol Rhythms. 2003;18(3):227–234. doi: 10.1177/0748730403018003005.
  • Berson DM, Dunn FA, Takao M. Phototransduction by retinal ganglion cells that set the circadian clock. Science. 2002;295(5557):1070–1073. doi: 10.1126/science.1067262.
  • Hattar S, Liao HW, Takao M, et al. Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science. 2002;295(5557):1065–1070. doi: 10.1126/science.1069609.
  • Lucas RJ, Hattar S, Takao M, et al. Diminished pupillary light reflex at high irradiances in melanopsin-knockout mice. Science. 2003;299(5604):245–247. doi: 10.1126/science.1077293.
  • Spitschan M. Melanopsin contributions to non-visual and visual function. Curr Opin Behav Sci. 2019;30:67–72. doi: 10.1016/j.cobeha.2019.06.004.
  • Rushton WAH. Review lecture, pigments and signals in colour vision. J Physiol. 1972;220(3):1P–31P.
  • CIE. CIE S 026/E:2018: CIE system for metrology of optical radiation for ipRGC-Influenced responses to light. Vienna: CIE Central Bureau; 2018.
  • Spitschan M, Mead J, Roos C, et al. Luox: validated reference open-access and open-source web platform for calculating and sharing physiologically relevant quantities for light and lighting. Wellcome Open Res. 2021;6:69. doi: 10.12688/wellcomeopenres.16595.3.
  • Price LLA, Blattner P. Circadian and visual photometry. Prog Brain Res. 2022;273(1):1–11. doi: 10.1016/bs.pbr.2022.02.014.
  • Schlangen LJM, Price LLA. The lighting environment, its metrology, and non-visual responses. Front Neurol. 2021;12:624861. doi: 10.3389/fneur.2021.624861.
  • Spitschan M, Stefani O, Blattner P, et al. How to report light exposure in human chronobiology and sleep research experiments. Clocks Sleep. 2019;1(3):280–289. doi: 10.3390/clockssleep1030024.
  • Wirz-Justice A. Light therapy for depression: present status, problems, and perspectives. Psychopathology. 1986;19(Suppl. 2):136–141. doi: 10.1159/000285145.
  • Rosenthal NE, Sack DA, Skwerer RG, et al. Phototherapy for seasonal affective disorder. J Biol Rhythms. 1988;3(2):101–120. doi: 10.1177/074873048800300202.
  • Brown WA. Is light treatment a placebo? Psychopharmacol Bull. 1990;26(4):527–530.
  • Eastman CI. What the placebo literature can tell us about light therapy for SAD. Psychopharmacol Bull. 1990;26(4):495–504.
  • Stewart J. Placebos in evaluating light therapy for seasonal affective disorder. Psychopharmacol Bull. 1990;26(4):525–526.
  • Terman M. Problems and prospects for use of bright light as a therapeutic intervention. In: Light and biological rhythms in man. Elsevier; 1993 p. 421–36. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780080422794500352
  • Groß A, Möller HJ. Problem des Placeboeffektes bei Lichttherapie. In: Kasper S, Möller HJ, editors. Herbst-/Winterdepression und Lichttherapie . Vienna: Springer; 2004. p. 119–124. Available from: 10.1007/978-3-7091-0592-4_13
  • Eastman C. Stories from a life studying circadian rhythms and sleep. Sleep Advances. 2023;4(1)10.1093/sleepadvances/zpad040
  • Walbeek TJ, Harrison EM, Gorman MR, et al. Naturalistic intensities of light at night: a review of the potent effects of very dim light on circadian responses and considerations for translational research. Front Neurol. 2021;12:625334. doi: 10.3389/fneur.2021.625334.
  • Allen AE, Hazelhoff EM, Martial FP, et al. Exploiting metamerism to regulate the impact of a visual display on alertness and melatonin suppression independent of visual appearance. Sleep. 2018;41(8):zsy100.
  • Souman JL, Borra T, de Goijer I, et al. Spectral tuning of white light allows for strong reduction in melatonin suppression without changing illumination level or color temperature. J Biol Rhythms. 2018;33(4):420–431.
  • de Zeeuw J, Papakonstantinou A, Nowozin C, et al. Living in biological darkness: objective sleepiness and the pupillary light responses are affected by different metameric lighting conditions during daytime. J Biol Rhythms. 2019;34(4):410–431.
  • Zandi B, Stefani O, Herzog A, et al. Optimising metameric spectra for integrative lighting to modulate the circadian system without affecting visual appearance. Sci Rep. 2021;11(1):23188.
  • Blume C, Niedernhuber M, Spitschan M, et al. Melatonin suppression does not automatically alter sleepiness, vigilance, sensory processing, or sleep. Sleep. 2022;45(11):zsac199. doi: 10.1093/sleep/zsac199.
  • Estévez O, Spekreijse H. The “silent substitution” method in visual research. Vision Res. 1982;22(6):681–691. doi: 10.1016/0042-6989(82)90104-3.
  • Spitschan M, Woelders T. The method of silent substitution for examining melanopsin contributions to pupil control. Front Neurol. 2018;9:941. doi: 10.3389/fneur.2018.00941.
  • Lewy AJ, Wehr TA, Goodwin FK, et al. Light suppresses melatonin secretion in humans. Science. 1980;210(4475):1267–1269. doi: 10.1126/science.7434030.
  • Brainard GC, Hanifin JP, Greeson JM, et al. Action spectrum for melatonin regulation in humans: evidence for a novel circadian photoreceptor. J Neurosci. 2001;21(16):6405–6412. doi: 10.1523/JNEUROSCI.21-16-06405.2001.
  • Thapan K, Arendt J, Skene DJ. An action spectrum for melatonin suppression: evidence for a novel non-rod, non-cone photoreceptor system in humans. J Physiol. 2001;535(Pt 1):261–267.
  • Brown TM. Melanopic illuminance defines the magnitude of human circadian light responses under a wide range of conditions. J Pineal Res. 2020;69(1):e12655.
  • Khalsa SBS, Jewett ME, Cajochen C, et al. A phase response curve to single bright light pulses in human subjects. J Physiol. 2003;549(Pt 3):945–952.
  • Minors DS, Waterhouse JM, Wirz-Justice A. A human phase-response curve to light. Neurosci Lett. 1991;133(1):36–40.
  • Rüger M, St Hilaire MA, Brainard GC, et al. Human phase response curve to a single 6.5 h pulse of short-wavelength light. J Physiol. 2013;591(1):353–363. doi: 10.1113/jphysiol.2012.239046.
  • Dodson ER, Zee PC. Therapeutics for circadian rhythm sleep disorders. Sleep Med Clin. 2010;5(4):701–715.
  • Sack RL, Auckley D, Auger RR, et al. Circadian rhythm sleep disorders: part II, advanced sleep phase disorder, delayed sleep phase disorder, free-running disorder, and irregular sleep-wake rhythm. An American Academy of Sleep Medicine Review. Sleep. 2007;30(11):1484–1501.
  • Duffy JF, Kronauer RE, Czeisler CA. Phase-shifting human circadian rhythms: influence of sleep timing, social contact and light exposure. J Physiol. 1996;495(Pt 1):289–297. doi: 10.1113/jphysiol.1996.sp021593.
  • Youngstedt SD, Elliott JA, Kripke DF. Human circadian phase–response curves for exercise. J Physiol. 2019;597(8):2253–2268. doi: 10.1113/JP276943.
  • Youngstedt SD, Kline CE, Elliott JA, et al. Circadian phase-shifting effects of bright light, exercise, and bright light + exercise. J Circadian Rhythms. 2016;14:2.
  • Wehrens SMT, Christou S, Isherwood C, et al. Meal timing regulates the human circadian system. Curr Biol. 2017;27(12):1768–1775.e3. doi: 10.1016/j.cub.2017.04.059.
  • Terman M, Terman JS. Controlled trial of naturalistic dawn simulation and negative air ionization for seasonal affective disorder. Am J Psychiatry. 2006;163(12):2126–2133.
  • Terman M, Terman JS, Ross DC. A controlled trial of timed bright light and negative air ionization for treatment of winter depression. Arch Gen Psychiatry. 1998;55(10):875–882.
  • Goel N, Terman M, Su Terman J, et al. Controlled trial of bright light and negative air ions for chronic depression. Psychol Med. 2005;35(7):945–955.
  • Flory R, Ametepe J, Bowers B. A randomized, placebo-controlled trial of bright light and high-density negative air ions for treatment of seasonal affective disorder. Psychiatry Res. 2010;177(1–2):101–108.
  • Bowers B, Flory R, Ametepe J, et al. Controlled trial evaluation of exposure duration to negative air ions for the treatment of seasonal affective disorder. Psychiatry Res. 2018;259:7–14.
  • Perez V, Alexander DD, Bailey WH. Air ions and mood outcomes: a review and meta-analysis. BMC Psychiatry. 2013;13(1):29.
  • Terman M, Schlager D, Fairhurst S, et al. Dawn and dusk simulation as a therapeutic intervention. Biol Psychiatry. 1989;25(7):966–970.
  • Norden MJ, Avery DH. A controlled study of dawn simulation in subsyndromal winter depression. Acta Psychiatr Scand. 1993;88(1):67–71.
  • Avery DH, Bolte MAP, Wolfson JK, et al. Dawn simulation compared with a dim red signal in the treatment of winter depression. Biol Psychiatry. 1994;36(3):180–188.
  • Lingjaerde O, Føreland AR, Dankertsen J. Dawn simulation vs. lightbox treatment in winter depression: a comparative study. Acta Psychiatr Scand. 1998;98(1):73–80.
  • Meesters Y. Case study: dawn simulation as maintenance treatment in a nine-year-old patient with seasonal affective disorder. J Am Acad Child Adolesc Psychiatry. 1998;37(9):986–988. doi: 10.1097/00004583-199809000-00019.
  • Danilenko KV, Wirz-Justice A, Kräuchi K, et al. Phase advance after one or three simulated dawns in humans. Chronobiol Int. 2000;17(5):659–668. doi: 10.1081/cbi-100101072.
  • Danilenko KV, Wirz-Justice A, Kräuchi K, et al. The human circadian pacemaker can see by the dawn’s early light. J Biol Rhythms. 2000;15(5):437–446. doi: 10.1177/074873000129001521.
  • Avery DH, Eder DN, Bolte MA, et al. Dawn simulation and bright light in the treatment of SAD: a controlled study. Biol Psychiatry. 2001;50(3):205–216. doi: 10.1016/S0006-3223(01)01200-8.
  • Noguchi H, Sakaguchi T, Shirakawa S, et al. Effects of simulated dawn lighting on awakening. J Illum Eng Soc. 2001;30(1):49–56. doi: 10.1080/00994480.2001.10748333.
  • Fontana Gasio P, Kräuchi K, Cajochen C, et al. Dawn–dusk simulation light therapy of disturbed circadian rest–activity cycles in demented elderly. Exp Gerontol. 2003;38(1–2):207–216.
  • Leppämäki S, Meesters Y, Haukka J, et al. Effect of simulated dawn on quality of sleep – a community-based trial. BMC Psychiatry. 2003;3(1):14.
  • Thorn L, Hucklebridge F, Esgate A, et al. The effect of dawn simulation on the cortisol response to awakening in healthy participants. Psychoneuroendocrinology. 2004;29(7):925–930.
  • Terman M, Terman JS. Circadian rhythm phase advance with dawn simulation treatment for winter depression. J Biol Rhythms. 2010;25(4):297–301.
  • Gabel V, Maire M, Reichert CF, et al. Effects of artificial dawn and morning blue light on daytime cognitive performance, well-being. Chronobiol Int. 2013;30(8):988–997.
  • Thompson A, Jones H, Gregson W, et al. Effects of dawn simulation on markers of sleep inertia and post-waking performance in humans. Eur J Appl Physiol. 2014;114(5):1049–1056.
  • Tonetti L, Fabbri M, Erbacci A, et al. Effects of dawn simulation on attentional performance in adolescents. Eur J Appl Physiol. 2015;115(3):579–587.
  • Viola AU, Gabel V, Chellappa SL, et al. Dawn simulation light: a potential cardiac events protector. Sleep Med. 2015;16(4):457–461. doi: 10.1016/j.sleep.2014.12.016.
  • Bromundt V, Wirz-Justice A, Boutellier M, et al. Effects of a dawn–dusk simulation on circadian rest–activity cycles, sleep, mood and well-being in dementia patients. Exp Gerontol. 2019;124:110641.
  • Gabel V, Miglis M, Zeitzer JM. Effect of artificial dawn light on cardiovascular function, alertness, and balance in middle-aged and older adults. Sleep. 2020;43(10):zsaa082. doi: 10.1093/sleep/zsaa082.
  • Klein T, Martens H, Dijk DJ, et al. Circadian sleep regulation in the absence of light perception: chronic non-24-hour circadian rhythm sleep disorder in a blind man with a regular 24-hour sleep–wake schedule. Sleep. 1993;16(4):333–343. doi: 10.1093/sleep/16.4.333.
  • Czeisler CA, Shanahan TL, Klerman EB, et al. Suppression of melatonin secretion in some blind patients by exposure to bright light. N Engl J Med. 1995;332(1):6–11. doi: 10.1056/NEJM199501053320102.
  • Klerman EB, Zeitzer JM, Duffy JF, et al. Absence of an increase in the duration of the circadian melatonin secretory episode in totally blind human subjects. J Clin Endocrinol Metab. 2001;86(7):3166–3170.
  • Klerman EB, Shanahan TL, Brotman DJ, et al. Photic resetting of the human circadian pacemaker in the absence of conscious vision. J Biol Rhythms. 2002;17(6):548–555. doi: 10.1177/0748730402238237.
  • Zaidi FH, Hull JT, Peirson SN, et al. Short-wavelength light sensitivity of circadian, pupillary, and visual awareness in humans lacking an outer retina. Curr Biol. 2007;17(24):2122–2128.
  • Vandewalle G, Collignon O, Hull JT, et al. Blue light stimulates cognitive brain activity in visually blind individuals. J Cogn Neurosci. 2013;25(12):2072–2085. doi: 10.1162/jocn_a_00450.
  • Hull JT, Czeisler CA, Lockley SW. Suppression of melatonin secretion in totally visually blind people by ocular exposure to white light. Ophthalmology. 2018;125(8):1160–1171.
  • Vandewalle G, van Ackeren MJ, Daneault V, et al. Light modulates oscillatory alpha activity in the occipital cortex of totally visually blind individuals with intact non-image-forming photoreception. Sci Rep. 2018;8(1):16968.
  • Spitschan M, Garbazza C, Kohl S, et al. Sleep and circadian phenotype in people without cone-mediated vision: a case series of five CNGB3 and two CNGA3 patients. Brain Commun. 2021;3(3):fcab159.
  • Madsen HØ, Ba-Ali S, Hageman I, et al. Light therapy for seasonal affective disorder in visual impairment and blindness – a pilot study. Acta Neuropsychiatr. 2021;33(4):191–199.
  • Knoop M, Broszio K, Diakite A, et al. Methods to describe and measure lighting conditions in experiments on non-image-forming aspects. LEUKOS. 2019;15(2–3):163–179. doi: 10.1080/15502724.2018.1518716.
  • Veitch JA, Knoop M. CIE TN 011:2020 What to document and report in studies of ipRGC-influenced responses to light . International Commission on Illumination (CIE); 2020. Available from: http://cie.co.at/publications/what-document-and-report-studies-iprgc-influenced-responses-light
  • Spitschan M, Kervezee L, Lok R, et al. ENLIGHT: a consensus checklist for reporting laboratory-based studies on the non-visual effects of light in humans. EBioMedicine. 2023;98:104889.
  • Schöllhorn I, Stefani O, Lucas RJ, et al. Melanopic irradiance defines the impact of evening display light on sleep latency, melatonin and alertness. Commun Biol. 2023;6(1):228.
  • Spitschan M, Smolders K, Vandendriessche B, et al. Verification, analytical validation and clinical validation (V3) of wearable dosimeters and light loggers. Digit Health. 2022;8:20552076221144858.
  • Balajadia E, Garcia S, Stampfli J, et al. Usability and acceptability of a corneal-plane α-opic light logger in a 24-hour field trial. Digit Biomark 2023;7(1):139–149.
  • Stampfli J, Schrader B, Di Battista C, et al. The light-dosimeter: a new device to help advance research on the non-visual responses to light. Light Res Technol. 2023;55(4–5):474–486.
  • Okudaira N, Kripke DF, Webster JB. Naturalistic studies of human light exposure. Am J Physiol. 1983;245(4):R613–R615.
  • Savides TJ, Messin S, Senger C, et al. Natural light exposure of young adults. Physiol Behav. 1986;38(4):571–574.
  • Aarts MPJ, van Duijnhoven J, Aries MBC, et al. Performance of personally worn dosimeters to study non-image forming effects of light: assessment methods. Build Environ. 2017;117:60–72. doi: 10.1016/j.buildenv.2017.03.002.
  • Hartmeyer S, Webler F, Andersen M. Towards a framework for light-dosimetry studies: methodological considerations. Light Res Technol. 2022;55:377–399.
  • Hartmeyer S, Andersen M. Towards a framework for light-dosimetry studies: quantification metrics. Light Res Technol. 2023. doi: 10.1177/14771535231170500.
  • Hubalek S, Brink M, Schierz C. Office workers’ daily exposure to light and its influence on sleep quality and mood. Light Res Technol. 2010;42(1):33–50. doi: 10.1177/1477153509355632.
  • Spitschan M. Photoreceptor inputs to pupil control. Journal of Vision. 2019;19(9):5 10.1167/19.9.5
  • Schulz KF, Altman DG, Moher D, et al. CONSORT 2010 statement: updated guidelines for reporting parallel group randomised trials. BMJ. 2010;340(1):c332.