1,852
Views
0
CrossRef citations to date
0
Altmetric
Infectious Diseases

Burkholderia cepacia complex in cystic fibrosis: critical gaps in diagnosis and therapy

ORCID Icon & ORCID Icon
Article: 2307503 | Received 21 Nov 2023, Accepted 15 Jan 2024, Published online: 23 Jan 2024

References

  • Rhodes KA, Schweizer HP. Antibiotic resistance in burkholderia species. Drug Resist Updat. 2016;28:1–10. doi: 10.1016/j.drup.2016.07.003.
  • Parfitt KM, Green AE, Connor TR, et al. Identification of two distinct phylogenomic lineages and model strains for the understudied cystic fibrosis lung pathogen Burkholderia multivorans. Microbiology (Reading). 2023;169(8):001366. doi: 10.1099/mic.0.001366.
  • Fainardi V, Neglia C, Muscarà M, et al. Multidrug-resistant bacteria in children and adolescents with cystic fibrosis. Children (Basel). 2022;9(9):1330. doi: 10.3390/children9091330.
  • Ferreira MR, Gomes SC, Moreira LM. Mucoid switch in Burkholderia cepacia complex bacteria: triggers, molecular mechanisms and implications in pathogenesis. Adv Appl Microbiol. 2019;107:113–140. In: academic Press Inc doi: 10.1016/bs.aambs.2019.03.001.
  • Lauman P, Dennis JJ. Advances in phage therapy: targeting the Burkholderia cepacia complex. Viruses. 2021;13(7):1331. doi: 10.3390/v13071331.
  • Seelman SL, Bazaco MC, Wellman A, et al. Burkholderia cepacia complex outbreak linked to a no-rinse cleansing foam product, United States - 2017-2018. Epidemiol Infect. 2022;150:e154. doi: 10.1017/S0950268822000668.s
  • Sfeir MM. Burkholderia cepacia complex infections: more complex than the bacterium name suggest. J Infect. 2018;77(3):166–170. doi: 10.1016/j.jinf.2018.07.006.
  • Maki Al-Nasrawy L, Abdali SA, Mohammed Jawad S. Molecular research comparing the probabilities of Burkholderia cepacia bacterium diagnosis procedures. Arch Razi Inst. 2022;77(2):717–725. doi: 10.22092/ARI.2022.357464.2041.
  • McAvoy AC, Jaiyesimi O, Threatt PH, et al. Differences in cystic fibrosis-associated burkholderia spp. bacteria metabolomes after exposure to the antibiotic trimethoprim. ACS Infect Dis. 2020;6(5):1154–1168. doi: 10.1021/acsinfecdis.9b00513.
  • Häfliger E, Atkinson A, Marschall J. Systematic review of healthcare-associated Burkholderia cepacia complex outbreaks: presentation, causes and outbreak control. Infect Prev Pract. 2020;2(3):100082. doi: 10.1016/j.infpip.2020.100082.
  • Angrup A, Kanaujia R, Biswal M, et al. Systematic review of ultrasound gel associated Burkholderia cepacia complex outbreaks: clinical presentation, sources and control of outbreak. Am J Infect Control. 2022;50(11):1253–1257. doi: 10.1016/j.ajic.2022.02.005.
  • Silmon T, Chapman D. What’s in your bottle? Investigating a pseudo-outbreak of Burkholderia cepacia. Am J Infect Control. 2019;47(6):S8–S9. doi: 10.1016/j.ajic.2019.04.152.
  • Becker SL, Berger FK, Feldner SK, et al. Outbreak of Burkholderia cepacia complex infections associated with contaminated octenidine mouthwash solution, Germany, august to september 2018. Euro Surveill. 2018;23(42):1800540. doi: 10.2807/1560-7917.ES.2018.23.42.1800540.
  • Bender JK, Haller S, Pfeifer Y, et al. Combined clinical, epidemiological, and genome-based analysis identified a nationwide outbreak of Burkholderia cepacia complex infections caused by contaminated mouthwash solutions. Open Forum Infect Dis. 2022;9(5):ofac114. doi: 10.1093/ofid/ofac114.
  • Tüfekci S, Şafak B, Nalbantoğlu B, et al. Burkholderia cepacia complex bacteremia outbreaks among non-cystic fibrosis patients in the pediatric unit of a university hospital. Turk J Pediatr. 2021;63(2):218–222. doi: 10.24953/turkjped.2021.02.005.
  • Bilgin H, Altınkanat Gelmez G, Bayrakdar F, et al. An outbreak investigation of Burkholderia cepacia infections related with contaminated chlorhexidine mouthwash solution in a tertiary care center in Turkey. Antimicrob Resist Infect Control. 2021;10(1):143. doi: 10.1186/s13756-021-01004-8.
  • Wong SCY, Wong S-C, Chen JHK, et al. Polyclonal Burkholderia cepacia complex outbreak in peritoneal dialysis patients caused by contaminated aqueous chlorhexidine. Emerg Infect Dis. 2020;26(9):1987–1997. doi: 10.3201/eid2609.191746.
  • Singh S, Sharma A, Nag V. Bacterial pathogens from lower respiratory tract infections: a study from Western Rajasthan. J Family Med Prim Care. 2020;9(3):1407–1412. doi: 10.4103/jfmpc.jfmpc_994_19.
  • Shi H, Chen X, Chen L, et al. Burkholderia cepacia infection in children without cystic fibrosis: a clinical analysis of 50 cases. Front Pediatr. 2023;11:1115877. doi: 10.3389/fped.2023.1115877.
  • Nye C, Duckers J, Dhillon R. Cefiderocol to manage chronic, multi-drug-resistant Burkholderia cepacia complex infection in a patient with cystic fibrosis: a case report. Access Microbiol. 2022;4(10):acmi000413. doi: 10.1099/acmi.0.000413.
  • Daccò V, Alicandro G, Consales A, et al. Cepacia syndrome in cystic fibrosis: a systematic review of the literature and possible new perspectives in treatment. Pediatr Pulmonol. 2023;58(5):1337–1343. doi: 10.1002/ppul.26359.
  • Somayaji R, Yau YCW, Tullis E, et al. Clinical outcomes associated with Burkholderia cepacia complex infection in patients with cystic fibrosis. Ann Am Thorac Soc. 2020;17(12):1542–1548. doi: 10.1513/AnnalsATS.202003-204OC.
  • Bierlaagh MC, Muilwijk D, Beekman JM, et al. A new era for people with cystic fibrosis. Eur J Pediatr. 2021;180(9):2731–2739. doi: 10.1007/s00431-021-04168-y.
  • Klimko A, Brandt A, Brustan M-I, et al. A case report of cystic fibrosis complicated by Burkholderia cepacia and cutaneous vasculitis. Cureus. May 2020;12(5):e8158. doi: 10.7759/cureus.8158.
  • Masood A, Jacob M, Gu X, et al. Distinctive metabolic profiles between cystic fibrosis mutational subclasses and lung function. Metabolomics. 2021;17(1):4. doi: 10.1007/s11306-020-01760-5.
  • Dickinson KM, Collaco JM. Cystic fibrosis. Pediatr Rev. 2021;42(2):55–67. doi: 10.1542/pir.2019-0212.
  • López-Valdez JA, Aguilar-Alonso LA, Gándara-Quezada V, et al. Cystic fibrosis: current concepts. Bol Med Hosp Infant Mex. 2021;78(6):584–596. doi: 10.24875/BMHIM.20000372.
  • Guo J, Garratt A, Hill A. Worldwide rates of diagnosis and effective treatment for cystic fibrosis. J Cyst Fibros. 2022;21(3):456–462. doi: 10.1016/j.jcf.2022.01.009.
  • Rosales-Reyes R, Rodríguez-Alvarado M, Lezana-Fernández JL, et al. Pseudomonas aeruginosa isolates from a cohort of mexican children with cystic fibrosis show adaptation to a chronic phenotype. Pediatr Infect Dis J. 2020;39(10):899–906. doi: 10.1097/INF.0000000000002714.
  • Lund-Palau H, Turnbull AR, Bush A, et al. Pseudomonas aeruginosa infection in cystic fibrosis: pathophysiological mechanisms and therapeutic approaches. Expert Rev Respir Med. 2016;10(6):685–697. doi: 10.1080/17476348.2016.1177460.
  • Shteinberg M, Haq IJ, Polineni D, et al. Cystic fibrosis. Lancet. 2021;397(10290):2195–2211. doi: 10.1016/S0140-6736(20)32542-3.
  • Høiby N, Ciofu O, Bjarnsholt T. Pseudomonas aeruginosa biofilms in cystic fibrosis. Future Microbiol. 2010;5(11):1663–1674. doi: 10.2217/fmb.10.125.
  • Sousa A, Pereira M. Pseudomonas aeruginosa diversification during infection development in cystic fibrosis lungs—a review. Pathogens. 2014;3(3):680–703. doi: 10.3390/pathogens3030680.
  • Rosales-Reyes R, Vargas-Roldán SY, Lezana-Fernández JL, et al. Pseudomonas aeruginosa: genetic adaptation, a strategy for its persistence in cystic fibrosis. Arch Med Res. 2021;52(4):357–361. doi: 10.1016/j.arcmed.2020.12.004.
  • Blanchard AC, Waters VJ. Microbiology of cystic fibrosis airway disease. Semin Respir Crit Care Med. 2019;40(6):727–736. doi: 10.1055/s-0039-1698464.
  • Behroozian S, Zlosnik JEA, Xu W, et al. Antibacterial activity of a natural clay mineral against Burkholderia cepacia complex and other bacterial pathogens isolated from people with cystic fibrosis. Microorganisms. 2023;11(1):150. doi: 10.3390/microorganisms11010150.
  • Van Dalem A, Herpol M, Echahidi F, et al. In vitro susceptibility of Burkholderia cepacia complex isolated from cystic fibrosis patients to ceftazidime-avibactam and ceftolozane-tazobactam. Antimicrob Agents Chemother. 2018;62(9):e00590-18. doi: 10.1128/AAC.00590-18.
  • Marrs ECL, Perry A, Perry JD. Evaluation of three culture media for isolation of Burkholderia cepacia complex from respiratory samples of patients with cystic fibrosis. Microorganisms. 2021;9(12):2604. doi: 10.3390/microorganisms9122604.
  • Naqvi S, Varadhan H, Givney R. Is prolonged incubation required for optimal recovery of Burkholderia cepacia complex in sputum from cystic fibrosis patients? Data versus dogma. Pathology. 2020;52(3):366–369. doi: 10.1016/j.pathol.2019.11.011.
  • Lupo A, Isis E, Tinguely R, et al. Clonality and antimicrobial susceptibility of Burkholderia cepacia complex isolates collected from cystic fibrosis patients during 1998-2013 in Bern, Switzerland. New Microbiol. 2015;38(2):281–288. http://www.ncbi.nlm.nih.gov/pubmed/25938755.
  • Akkerman-Nijland AM, Rottier BL, Holstein J, et al. Eradication of Burkholderia cepacia complex in cystic fibrosis patients with inhalation of amiloride and tobramycin combined with oral cotrimoxazole. ERJ Open Res. 2023;9(3):00055–02023. doi: 10.1183/23120541.00055-2023.
  • Regan KH, Bhatt J. Eradication therapy for Burkholderia cepacia complex in people with cystic fibrosis. Cochrane Database Syst Rev. 2019;4(4):CD009876. doi: 10.1002/14651858.CD009876.pub4.
  • Kordes A, Preusse M, Willger SD, et al. Genetically diverse Pseudomonas aeruginosa populations display similar transcriptomic profiles in a cystic fibrosis explanted lung. Nat Commun. 2019;10(1):3397. doi: 10.1038/s41467-019-11414-3.
  • Óscar Fielbaum C. Avances en fibrosis quística. Rev Médica Clínica Las Condes. 2011;22(2):150–159. doi: 10.1016/S0716-8640(11)70407-2.
  • Sousa SA, Seixas AMM, Marques JMM, et al. Immunization and immunotherapy approaches against Pseudomonas aeruginosa and Burkholderia cepacia complex infections. Vaccines (Basel). 2021;9(6):670. doi: 10.3390/vaccines9060670.
  • Jorgensen JH, Jorgensen JH, Carroll Funke, et al. Manual of clinical microbiology. (KCG  eds.). Washington, DC, USA: ASM Press; 2015. doi: 10.1128/9781555817381.
  • Pachori P, Gothalwal R, Gandhi P. Emergence of antibiotic resistance Pseudomonas aeruginosa in intensive care unit; a critical review. Genes Dis. 2019;6(2):109–119. doi: 10.1016/j.gendis.2019.04.001.
  • Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet. 2022;399(10325):629–655. doi: 10.1016/S0140-6736(21)02724-0.
  • Landes NJ, Livesay HN, Schaeffer F, et al. Burkholderia cepacia: a complex problem for more than cystic fibrosis patients. Clin Microbiol Newsl. 2016;38(18):147–150. doi: 10.1016/j.clinmicnews.2016.08.003.
  • Devanga Ragupathi NK, Veeraraghavan B. Accurate identification and epidemiological characterization of Burkholderia cepacia complex: an update. Ann Clin Microbiol Antimicrob. 2019;18(1):7. doi: 10.1186/s12941-019-0306-0.
  • Fehlberg LCC, Andrade LHS, Assis DM, et al. Performance of MALDI-ToF MS for species identification of Burkholderia cepacia complex clinical isolates. Diagn Microbiol Infect Dis. 2013;77(2):126–128. doi: 10.1016/j.diagmicrobio.2013.06.011.
  • Zhang L, Gao W, Yin Y, et al. Discrimination of Burkholderia gladioli pv.alliicola and B. cepacia complex using the gyrB gene of B. gladioli pv. alliicola. Exp Ther Med. 17December 2018;17(3):1870–1876. doi: 10.3892/etm.2018.7137.
  • Tabacchioni S, Ferri L, Manno G, et al. Use of the gyrB gene to discriminate among species of the Burkholderia cepacia complex. FEMS Microbiol Lett. 2008;281(2):175–182. doi: 10.1111/j.1574-6968.2008.01105.x.
  • Gaibani P, Giani T, Bovo F, et al. Resistance to ceftazidime/avibactam, meropenem/vaborbactam and imipenem/relebactam in Gram-Negative MDR bacilli: molecular mechanisms and susceptibility testing. Antibiotics (Basel). 2022;11(5):628. doi: 10.3390/antibiotics11050628.
  • Michael CA, Dominey-Howes D, Labbate M. The antimicrobial resistance crisis: causes, consequences, and management. Front Public Heal. 2014;2:145. doi: 10.3389/fpubh.2014.00145.
  • Gashaw M, Berhane M, Bekele S, et al. Emergence of high drug resistant bacterial isolates from patients with health care associated infections at jimma university medical center: a cross sectional study. Antimicrob Resist Infect Control. 2018;7(1):138. doi: 10.1186/s13756-018-0431-0.
  • Irudal S, Scoffone VC, Trespidi G, et al. Identification by reverse vaccinology of three virulence factors in Burkholderia cenocepacia that may represent ideal vaccine antigens. Vaccines (Basel). 2023;11(6):1039. doi: 10.3390/vaccines11061039.
  • Frost F, Shaw M, Nazareth D. Antibiotic therapy for chronic infection with Burkholderia cepacia complex in people with cystic fibrosis. Cochrane Database Syst Rev. 2019;6(6):CD013079. doi: 10.1002/14651858.CD013079.pub2.
  • Frost F, Shaw M, Nazareth D. Antibiotic therapy for chronic infection with Burkholderia cepacia complex in people with cystic fibrosis. Cochrane Database Syst Rev. 2021;12(12):CD013079. doi: 10.1002/14651858.CD013079.pub3.
  • Haidar G, Chan BK, Cho S-T, et al. Phage therapy in a lung transplant recipient with cystic fibrosis infected with multidrug-resistant Burkholderia multivorans. Transpl Infect Dis. 2023;25(2):e14041. doi: 10.1111/tid.14041.
  • Lloyd EC, Cogen JD, Maples H, et al. Antimicrobial stewardship in cystic fibrosis. J Pediatric Infect Dis Soc. 2022;11(Supplement_2):S53–S61. doi: 10.1093/jpids/piac071.
  • Babich T, Naucler P, Valik JK, et al. Duration of treatment for Pseudomonas aeruginosa bacteremia: a retrospective study. Infect Dis Ther. 2022;11(4):1505–1519. doi: 10.1007/s40121-022-00657-1.
  • Middleton PG, Kidd TJ, Williams B. Combination aerosol therapy to treat Burkholderia cepacia complex. Eur Respir J. 2005;26(2):305–308. doi: 10.1183/09031936.05.00119504.
  • Cui X, Lü Y, Yue C. Development and research progress of anti-drug resistant bacteria drugs. Infect Drug Resist. 2021;volume14:5575–5593. doi: 10.2147/IDR.S338987.
  • Lewis K. The science of antibiotic discovery. Cell. 2020;181(1):29–45. doi: 10.1016/j.cell.2020.02.056.