1,033
Views
0
CrossRef citations to date
0
Altmetric
Toxicology

Propyl gallate induces human pulmonary fibroblast cell death through the regulation of Bax and caspase-3

ORCID Icon
Article: 2319853 | Received 11 Jul 2023, Accepted 11 Feb 2024, Published online: 19 Feb 2024

References

  • Final report on the amended safety assessment of propyl gallate. Int J Toxicol. 2007;26(Suppl 3):1–12.
  • Reddan JR, Giblin FJ, Sevilla M, et al. Propyl gallate is a superoxide dismutase mimic and protects cultured lens epithelial cells from H2O2 insult. Exp Eye Res. 2003;76(1):49–59. doi:10.1016/s0014-4835(02)00256-7.
  • Chen CH, Liu TZ, Chen CH, et al. The efficacy of protective effects of tannic acid, gallic acid, ellagic acid, and propyl gallate against hydrogen peroxide-induced oxidative stress and DNA damages in IMR-90 cells. Mol Nutr Food Res. 2007;51(8):962–968. doi:10.1002/mnfr.200600230.
  • Hirose M, Yada H, Hakoi K, et al. Modification of carcinogenesis by alpha-tocopherol, t-butylhydroquinone, propyl gallate and butylated hydroxytoluene in a rat multi-organ carcinogenesis model. Carcinogenesis. 1993;14(11):2359–2364. doi:10.1093/carcin/14.11.2359.
  • Kobayashi H, Oikawa S, Hirakawa K, et al. Metal-mediated oxidative damage to cellular and isolated DNA by gallic acid, a metabolite of antioxidant propyl gallate. Mutat Res. 2004;558(1-2):111–120. doi:10.1016/j.mrgentox.2003.11.002.
  • Nakagawa Y, Nakajima K, Tayama S, et al. Metabolism and cytotoxicity of propyl gallate in isolated rat hepatocytes: effects of a thiol reductant and an esterase inhibitor. Mol Pharmacol. 1995;47(5):1021–1027.
  • Boyd I, Beveridge EG. Relationship between the antibacterial activity towards Escherichia coli NCTC 5933 and the physico-chemical properties of some esters of 3,4,5-trihydroxybenzoic acid (gallic acid. Microbios. 1979;24(97-98):173–184.)
  • Jacobi H, Eicke B, Witte I. DNA strand break induction and enhanced cytotoxicity of propyl gallate in the presence of copper(II). Free Radic Biol Med. 1998;24(6):972–978. doi:10.1016/s0891-5849(97)00400-0.
  • Bettger WJ, Ham RG. Effects of non-steroidal anti-inflammatory agents and antioxidants on the clonal growth of human diploid fibroblasts. Prog Lipid Res. 1981;20:265–268. doi:10.1016/0163-7827(81)90052-7.
  • Martínez-Alonso D, Malumbres M. Mammalian cell cycle cyclins. Semin Cell Dev Biol. 2020;107:28–35. doi:10.1016/j.semcdb.2020.03.009.
  • Dalton S. Linking the cell cycle to cell fate decisions. Trends Cell Biol. 2015;25(10):592–600. doi:10.1016/j.tcb.2015.07.007.
  • Chung C. Restoring the switch for cancer cell death: targeting the apoptosis signaling pathway. Am J Health Syst Pharm. 2018;75(13):945–952. doi:10.2146/ajhp170607.
  • Huska JD, Lamb HM, Hardwick JM. Overview of BCL-2 family proteins and therapeutic potentials. Methods Mol Biol. 2019;1877:1–21.
  • McCubrey JA, Lertpiriyapong K, Fitzgerald TL, et al. Roles of TP53 in determining therapeutic sensitivity, growth, cellular senescence, invasion and metastasis. Adv Biol Regul. 2017;63:32–48. doi:10.1016/j.jbior.2016.10.001.
  • Würstle ML, Laussmann MA, Rehm M. The Central role of initiator caspase-9 in apoptosis signal transduction and the regulation of its activation and activity on the apoptosome. Exp Cell Res. 2012;318(11):1213–1220. doi:10.1016/j.yexcr.2012.02.013.
  • Liu X, Yue P, Zhou Z, et al. Death receptor regulation and celecoxib-induced apoptosis in human lung cancer cells. J Natl Cancer Inst. 2004;96(23):1769–1780. doi:10.1093/jnci/djh322.
  • Genestra M. Oxyl radicals, redox-sensitive signalling Cascades and antioxidants. Cell Signal. 2007;19(9):1807–1819. doi:10.1016/j.cellsig.2007.04.009.
  • Kusuhara M, Takahashi E, Peterson TE, et al. p38 kinase is a negative regulator of angiotensin II signal transduction in vascular smooth muscle cells: effects on Na+/H + exchange and ERK1/2. Circ Res. 1998;83(8):824–831. doi:10.1161/01.res.83.8.824.
  • Blenis J. Signal transduction via the MAP kinases: proceed at your own RSK. Proc Natl Acad Sci U S A. 1993;90(13):5889–5892. doi:10.1073/pnas.90.13.5889.
  • Henson ES, Gibson SB. Surviving cell death through epidermal growth factor (EGF) signal transduction pathways: implications for cancer therapy. Cell Signal. 2006;18(12):2089–2097. doi:10.1016/j.cellsig.2006.05.015.
  • Guyton KZ, Liu Y, Gorospe M, et al. Activation of mitogen-activated protein kinase by H2O2. Role in cell survival following oxidant injury. J Biol Chem. 1996;271(8):4138–4142. doi:10.1074/jbc.271.8.4138.
  • Hsin YH, Chen CF, Huang S, et al. The apoptotic effect of nanosilver is mediated by a ROS- and JNK-dependent mechanism involving the mitochondrial pathway in NIH3T3 cells. Toxicol Lett. 2008;179(3):130–139. doi:10.1016/j.toxlet.2008.04.015.
  • Mao X, Yu CR, Li WH, et al. Induction of apoptosis by shikonin through a ROS/JNK-mediated process in bcr/abl-positive chronic myelogenous leukemia (CML) cells. Cell Res. 2008;18(8):879–888. doi:10.1038/cr.2008.86.
  • Latimer HR, Veal EA. Peroxiredoxins in regulation of MAPK signalling pathways; sensors and barriers to signal transduction. Mol Cells. 2016;39(1):40–45. doi:10.14348/molcells.2016.2327.
  • Hu Z, Li M, Chen Z, et al. Advances in clinical trials of targeted therapy and immunotherapy of lung cancer in 2018. Transl Lung Cancer Res. 2019;8(6):1091–1106. doi:10.21037/tlcr.2019.10.17.
  • Petty RD, Nicolson MC, Kerr KM, et al. Gene expression profiling in non-small cell lung cancer: from molecular mechanisms to clinical application. Clin Cancer Res. 2004;10(10):3237–3248. doi:10.1158/1078-0432.CCR-03-0503.
  • Ham J, Lim W, Park S, et al. Synthetic phenolic antioxidant propyl gallate induces male infertility through disruption of calcium homeostasis and mitochondrial function. Environ Pollut. 2019;248:845–856. doi:10.1016/j.envpol.2019.02.087.
  • Han YH, Moon HJ, You BR, et al. Propyl gallate inhibits the growth of endothelial cells, especially calf pulmonary arterial endothelial cells via caspase-independent apoptosis. Int J Mol Med. 2010;25(6):937–944. doi:10.3892/ijmm_00000425.
  • Han YH, Moon HJ, You BR, et al. Propyl gallate inhibits the growth of calf pulmonary arterial endothelial cells via glutathione depletion. Toxicol in Vitro. 2010;24(4):1183–1189. doi:10.1016/j.tiv.2010.02.013.
  • Chen CH, Lin WC, Kuo CN, et al. Role of redox signaling regulation in propyl gallate-induced apoptosis of human leukemia cells. Food Chem Toxicol. 2011;49(2):494–501. doi:10.1016/j.fct.2010.11.031.
  • Wei PL, Huang CY, Chang YJ. Propyl gallate inhibits hepatocellular carcinoma cell growth through the induction of ROS and the activation of autophagy. PLoS One. 2019;14(1):e0210513. doi:10.1371/journal.pone.0210513.
  • Tanaka Y, Tsuneoka M. Gallic acid derivatives propyl gallate and epigallocatechin gallate reduce rRNA transcription via induction of KDM2A activation. Biomolecules. 2021;12(1):30. doi:10.3390/biom12010030.
  • Han YH, Park WH. Propyl gallate inhibits the growth of HeLa cells via regulating intracellular GSH level. Food Chem Toxicol. 2009;47(10):2531–2538. doi:10.1016/j.fct.2009.07.013.
  • Han YH, Moon HJ, You BR, et al. The anti-apoptotic effects of caspase inhibitors on propyl gallate-treated HeLa cells in relation to reactive oxygen species and glutathione levels. Arch Toxicol. 2009;83(9):825–833. doi:10.1007/s00204-009-0430-2.
  • Park WH. Propyl gallate reduces the growth of lung cancer cells through caspasedependent apoptosis and G1 phase arrest of the cell cycle. Oncol Rep. 2020;44(6):2783–2791. doi:10.3892/or.2020.7815.
  • Wilson MS, Wynn TA. Pulmonary fibrosis: pathogenesis, etiology and regulation. Mucosal Immunol. 2009;2(2):103–121. doi:10.1038/mi.2008.85.
  • Han YH, Kim SZ, Kim SH, et al. Arsenic trioxide inhibits the growth of calu-6 cells via inducing a G2 arrest of the cell cycle and apoptosis accompanied with the depletion of GSH. Cancer Lett. 2008;270(1):40–55. doi:10.1016/j.canlet.2008.04.041.
  • Park WH. Upregulation of thioredoxin and its reductase attenuates arsenic trioxideinduced growth suppression in human pulmonary artery smooth muscle cells by reducing oxidative stress. Oncol Rep. 2020;43(1):358–367. doi:10.3892/or.2019.7414.
  • You BR, Park WH. Proteasome inhibition by MG132 induces growth inhibition and death of human pulmonary fibroblast cells in a caspase-independent manner. Oncology Reports. 2011;25(6):1705–1712.
  • Han YH, Park WH. Proteasome inhibitor MG132 reduces growth of As4.1 juxtaglomerular cells via caspase-independent apoptosis. Arch Toxicol. 2010;84(9):689–698. doi:10.1007/s00204-010-0550-8.
  • Park WH, Kim SH. Arsenic trioxide induces human pulmonary fibroblast cell death via the regulation of bcl-2 family and caspase-8. Mol Biol Rep. 2012;39(4):4311–4318. doi:10.1007/s11033-011-1218-z.
  • Han YH, Park WH. Pyrogallol-induced As4.1 juxtaglomerular cell death is attenuated by MAPK inhibitors via preventing GSH depletion. Arch Toxicol. 2010;84(8):631–640. doi:10.1007/s00204-010-0526-8.
  • You BR, Park WH. The effects of mitogen-activated protein kinase inhibitors or small interfering RNAs on gallic acid-induced HeLa cell death in relation to reactive oxygen species and glutathione. J Agric Food Chem. 2011;59(2):763–771. doi:10.1021/jf103379d.
  • Dacre JC. Long-term toxicity study of n-propyl gallate in mice. Food Cosmet Toxicol. 1974;12(1):125–129. doi:10.1016/0015-6264(74)90328-9.
  • Wu TW, Fung KP, Zeng LH, et al. Propyl gallate as a hepatoprotector in vitro and in vivo. Biochem Pharmacol. 1994;48(2):419–422. doi:10.1016/0006-2952(94)90115-5.
  • Rosin MP, Stich HF. Enhancing and inhibiting effects of propyl gallate on carcinogen-induced mutagenesis. J Environ Pathol Toxicol. 1980;4(1):159–167.
  • Abdo KM, Huff JE, Haseman JK, et al. No evidence of carcinogenicity of D-mannitol and propyl gallate in F344 rats or B6C3F1 mice. Food Chem Toxicol. 1986;24(10-11):1091–1097. doi:10.1016/0278-6915(86)90293-0.
  • Yang J, Liu X, Bhalla K, et al. Prevention of apoptosis by bcl-2: release of cytochrome c from mitochondria blocked. Science. 1997;275(5303):1129–1132. doi:10.1126/science.275.5303.1129.
  • Park WH. The anti-apoptotic effects of caspase inhibitors in propyl gallate-treated lung cancer cells are related to changes in reactive oxygen species and glutathione levels. Molecules. 2022;27(14):4587. doi:10.3390/molecules27144587.
  • You BR, Park WH. The enhancement of propyl gallate-induced HeLa cell death by MAPK inhibitors is accompanied by increasing ROS levels. Mol Biol Rep. 2011;38(4):2349–2358. doi:10.1007/s11033-010-0368-8.
  • Han YH, Kim SZ, Kim SH, et al. Enhancement of propyl gallate-induced calf pulmonary arterial endothelial cell death by MEK and JNK inhibitors. Mol Med Rep. 2009;2(5):825–830. doi:10.3892/mmr_00000179.
  • Park WH. Enhanced cell death effects of MAP kinase inhibitors in propyl gallate-treated lung cancer cells are related to increased ROS levels and GSH depletion. Toxicol in Vitro. 2021;74:105176. doi:10.1016/j.tiv.2021.105176.