1,330
Views
0
CrossRef citations to date
0
Altmetric
Oncology

Gastrin-releasing peptide receptor (GRPR) as a novel biomarker and therapeutic target in prostate cancer

, , ORCID Icon &
Article: 2320301 | Received 10 Oct 2023, Accepted 13 Feb 2024, Published online: 05 Mar 2024

References

  • Bergengren O, Pekala KR, Matsoukas K, et al. 2022 Update on prostate cancer epidemiology and risk factors—a systematic review. Eur Urology. 2023;84(2):1–10. doi: 10.1016/j.eururo.2023.04.021.
  • Grossman DC, et al. Screening for prostate cancer: US preventive services task force recommendation statement. JAMA. 2018;319(18):1901–1913.
  • Houshmand S, Lawhn-Heath C, Behr S. PSMA PET imaging in the diagnosis and management of prostate cancer. Abdom Radiol. 2023;48(12):3610–3623. doi: 10.1007/s00261-023-04002-z.
  • Schollhammer R, Quintyn Ranty M-L, de Clermont Gallerande H, et al. Theranostics of primary prostate cancer: beyond PSMA and GRP-R. Cancers. 2023;15(8):2345. doi: 10.3390/cancers15082345.
  • Sathekge M, Lengana T, Modiselle M, et al. 68Ga-PSMA-HBED-CC PET imaging in breast carcinoma patients. Eur J Nucl Med Mol Imaging. 2017;44(4):689–694. (doi: 10.1007/s00259-016-3563-6.
  • Rhee H, Blazak J, Tham CM, et al. Pilot study: use of gallium-68 PSMA PET for detection of metastatic lesions in patients with renal tumour. EJNMMI Res. 2016;6(1):76. doi: 10.1186/s13550-016-0231-6.
  • Sasikumar A, Joy A, Nanabala R, et al. 68Ga-PSMA PET/CT false-positive tracer uptake in Paget disease. Clin Nucl Med. 2016;41(10):e454-5–e455. doi: 10.1097/RLU.0000000000001340.
  • Noto B, Vrachimis A, Schäfers M, et al. Subacute stroke mimicking cerebral metastasis in 68Ga-PSMA-HBED-CC PET/CT. Clin Nucl Med. 2016;41(10):e449–e451. doi: 10.1097/RLU.0000000000001291.
  • Hermann RM, Djannatian M, Czech N, et al. Prostate-specific membrane antigen PET/CT: false-positive results due to sarcoidosis? Case Rep Oncol. 2016;9(2):457–463. doi: 10.1159/000447688.
  • Rowe SP, Gorin MA, Hammers HJ, et al. Imaging of metastatic clear cell renal cell carcinoma with PSMA-targeted 18F-DCFPyL PET/CT. Ann Nucl Med. 2015;29(10):877–882. doi: 10.1007/s12149-015-1017-z.
  • Verburg FA, Krohn T, Heinzel A, et al. First evidence of PSMA expression in differentiated thyroid cancer using [68Ga]PSMA-HBED-CC PET/CT. Eur J Nucl Med Mol Imaging. 2015;42(10):1622–1623. doi: 10.1007/s00259-015-3065-y.
  • Schwenck J, Tabatabai G, Skardelly M, et al. In vivo visualization of prostate-specific membrane antigen in glioblastoma. Eur J Nucl Med Mol Imaging. 2015;42(1):170–171. doi: 10.1007/s00259-014-2921-5.
  • Tosoian JJ, Gorin MA, Rowe SP, et al. Correlation of PSMA-Targeted (18)F-DCFPyL PET/CT findings with immunohistochemical and genomic data in a patient with metastatic neuroendocrine prostate cancer. Clin Genitourin Cancer. 2017;15(1):e65–e68. doi: 10.1016/j.clgc.2016.09.002.
  • Krohn T, Verburg FA, Pufe T, et al. [(68)Ga]PSMA-HBED uptake mimicking lymph node metastasis in coeliac ganglia: an important pitfall in clinical practice. Eur J Nucl Med Mol Imaging. 2015;42(2):210–214. doi: 10.1007/s00259-014-2915-3.
  • Maurer T, Gschwend JE, Rauscher I, et al. Diagnostic efficacy of (68)Gallium-PSMA positron emission tomography compared to conventional imaging for lymph node staging of 130 consecutive patients with intermediate to high risk prostate cancer. J Urol. 2016;195(5):1436–1443. doi: 10.1016/j.juro.2015.12.025.
  • Abouzayed A, Borin J, Lundmark F, et al. The GRPR antagonist [(99m)Tc]Tc-maSSS-PEG(2)-RM26 towards phase I clinical trial: kit preparation, characterization and toxicity. Diagnostics. 2023;13(9):1611. doi: 10.3390/diagnostics13091611.
  • Peng S, Zhan Y, Zhang D, et al. Structures of human gastrin-releasing peptide receptors bound to antagonist and agonist for cancer and itch therapy. Proc Natl Acad Sci USA. 2022;120(6):e2216230120. doi: 10.1073/pnas.2216230120.
  • Baratto L, Duan H, Mäcke H, et al. Imaging the distribution of gastrin-releasing peptide receptors in cancer. J Nucl Med. 2020;61(6):792–798. doi: 10.2967/jnumed.119.234971.
  • Lundmark F, Abouzayed A, Rinne SS, et al. Preclinical characterisation of PSMA/GRPR-Targeting heterodimer [(68)Ga]Ga-BQ7812 for PET diagnostic imaging of prostate cancer: a step towards clinical translation. Cancers. 2023;15(2):442. doi: 10.3390/cancers15020442.
  • Bailly T, Bodin S, Goncalves V, et al. Modular one-pot strategy for the synthesis of heterobivalent tracers. ACS Med Chem Lett. 2023;14(5):636–644. doi: 10.1021/acsmedchemlett.3c00057.
  • Castaldo R, Cavaliere C, Soricelli A, et al. Radiomic and genomic machine learning method performance for prostate cancer diagnosis: systematic literature review. J Med Internet Res. 2021;23(4):e22394. doi: 10.2196/22394.
  • Qiu D-X, Li J, Zhang J-W, et al. Dual-tracer PET/CT-targeted, mpMRI-targeted, systematic biopsy, and combined biopsy for the diagnosis of prostate cancer: a pilot study. Eur J Nucl Med Mol Imaging. 2022;49(8):2821–2832. doi: 10.1007/s00259-021-05636-1.
  • Ahmed HU, El-Shater Bosaily A, Brown LC, et al. Diagnostic accuracy of multi-parametric MRI and TRUS biopsy in prostate cancer (PROMIS): a paired validating confirmatory study. Lancet. 2017;389(10071):815–822. doi: 10.1016/S0140-6736(16)32401-1.
  • Sonn GA, Fan RE, Ghanouni P, et al. Prostate magnetic resonance imaging interpretation varies substantially across radiologists. Eur Urol Focus. 2019;5(4):592–599. doi: 10.1016/j.euf.2017.11.010.
  • Panebianco V, Barchetti G, Simone G, et al. Negative multiparametric magnetic resonance imaging for prostate cancer: what’s next? Eur Urol. 2018;74(1):48–54. doi: 10.1016/j.eururo.2018.03.007.
  • Weber WA. PET/MR imaging: a critical appraisal. J Nucl Med. 2014;55(Suppl 2):56s–58s. doi: 10.2967/jnumed.113.129270.
  • Noto B, Auf der Springe K, Huss S, et al. Prostate-specific membrane antigen-negative metastases-A potential pitfall in prostate-specific membrane antigen PET. Clin Nucl Med. 2018;43(6):e186–e188. doi: 10.1097/RLU.0000000000002073.
  • Rahbar K, Bode A, Weckesser M, et al. Radioligand therapy with 177Lu-PSMA-617 as a novel therapeutic option in patients with metastatic castration resistant prostate cancer. Clin Nucl Med. 2016;41(7):522–528. doi: 10.1097/RLU.0000000000001240.
  • Beer M, Montani M, Gerhardt J, et al. Profiling gastrin-releasing peptide receptor in prostate tissues: clinical implications and molecular correlates. Prostate. 2012;72(3):318–325. doi: 10.1002/pros.21434.
  • Duan H, Davidzon GA, Moradi F, et al. Modified PROMISE criteria for standardized interpretation of gastrin-releasing peptide receptor (GRPR)-targeted PET. Eur J Nucl Med Mol Imaging. 2023;50(13):4087–4095. doi: 10.1007/s00259-023-06385-z.
  • Zhang X, et al. 18F-labeled bombesin analogs for targeting GRP receptor-expressing prostate cancer. J Nucl Med. 2006;47(3):492–501.
  • Honer M, Mu L, Stellfeld T, et al. 18F-labeled bombesin analog for specific and effective targeting of prostate tumors expressing gastrin-releasing peptide receptors. J Nucl Med. 2011;52(2):270–278. doi: 10.2967/jnumed.110.081620.
  • Sah B-R, Burger IA, Schibli R, et al. Dosimetry and first clinical evaluation of the new 18F-radiolabeled bombesin analogue Bay 864367 in patients with prostate cancer. J Nucl Med. 2015;56(3):372–378. doi: 10.2967/jnumed.114.147116.
  • Liu Y, Hu X, Liu H, et al. A comparative study of radiolabeled bombesin analogs for the PET imaging of prostate cancer. J Nucl Med. 2013;54(12):2132–2138. doi: 10.2967/jnumed.113.121533.
  • Dalm SU, Bakker IL, de Blois E, et al. 68Ga/177Lu-NeoBOMB1, a novel radiolabeled GRPR antagonist for theranostic use in oncology. J Nucl Med. 2017;58(2):293–299. doi: 10.2967/jnumed.116.176636.
  • Schroeder RPJ, de Visser M, van Weerden WM, et al. Androgen-regulated gastrin-releasing peptide receptor expression in androgen-dependent human prostate tumor xenografts. Int J Cancer. 2010;126(12):2826–2834. doi: 10.1002/ijc.25000.
  • Duan H, Baratto L, Fan RE, et al. Correlation of (68)Ga-RM2 PET with postsurgery histopathology findings in patients with newly diagnosed intermediate- or high-Risk prostate cancer. J Nucl Med. 2022;63(12):1829–1835. doi: 10.2967/jnumed.122.263971.
  • Gao X, Tang Y, Chen M, et al. A prospective comparative study of [(68)Ga]Ga-RM26 and [(68)Ga]Ga-PSMA-617 PET/CT imaging in suspicious prostate cancer. Eur J Nucl Med Mol Imaging. 2023;50(7):2177–2187. doi: 10.1007/s00259-023-06142-2.
  • Touijer KA, Michaud L, Alvarez HAV, et al. Prospective study of the radiolabeled GRPR antagonist BAY86-7548 for positron emission tomography/computed tomography imaging of newly diagnosed prostate cancer. Eur Urol Oncol. 2019;2(2):166–173. doi: 10.1016/j.euo.2018.08.011.
  • Fassbender TF, Schiller F, Zamboglou C, et al. Voxel-based comparison of [(68)Ga]Ga-RM2-PET/CT and [(68)Ga]Ga-PSMA-11-PET/CT with histopathology for diagnosis of primary prostate cancer. EJNMMI Res. 2020;10(1):62. doi: 10.1186/s13550-020-00652-y.
  • Markwalder R, Reubi JC. Gastrin-releasing peptide receptors in the human prostate: relation to neoplastic transformation. Cancer Res. 1999;59(5):1152–1159.
  • Mansi R, Minamimoto R, Mäcke H, et al. Bombesin-Targeted PET of prostate cancer. J Nucl Med. 2016;57(Suppl 3):67s–72s. doi: 10.2967/jnumed.115.170977.
  • Cescato R, Maina T, Nock B, et al. Bombesin receptor antagonists may be preferable to agonists for tumor targeting. J Nucl Med. 2008;49(2):318–326. doi: 10.2967/jnumed.107.045054.
  • Pansky A, DE Weerth A, Fasler-Kan E, et al. Gastrin releasing peptide-preferring bombesin receptors mediate growth of human renal cell carcinoma. J Am Soc Nephrol. 2000;11(8):1409–1418. doi: 10.1681/ASN.V1181409.
  • Duan H, Iagaru A. PET imaging using gallium-68 ((68)Ga) RM2. PET Clin. 2022;17(4):621–629. doi: 10.1016/j.cpet.2022.07.006.
  • Ambrosini V, Fani M, Fanti S, et al. Radiopeptide imaging and therapy in Europe. J Nucl Med. 2011;52 Suppl 2:42s–55s. doi: 10.2967/jnumed.110.085753.
  • Case TC, Merkel A, Ramirez-Solano M, et al. Blocking GRP/GRP-R signaling decreases expression of androgen receptor splice variants and inhibits tumor growth in castration-resistant prostate cancer. Transl Oncol. 2021;14(11):101213. doi: 10.1016/j.tranon.2021.101213.
  • Zhang J, Niu G, Fan X, et al. PET using a GRPR antagonist (68)Ga-RM26 in healthy volunteers and prostate cancer patients. J Nucl Med. 2018;59(6):922–928. doi: 10.2967/jnumed.117.198929.
  • Günther T, Deiser S, Felber V, et al. Substitution of l-Tryptophan by α-Methyl-l-Tryptophan in (177)Lu-RM2 results in (177)Lu-AMTG, a high-affinity Gastrin-Releasing peptide receptor ligand with improved in vivo stability. J Nucl Med. 2022;63(9):1364–1370. doi: 10.2967/jnumed.121.263323.
  • Beheshti M, Taimen P, Kemppainen J, et al. Value of (68)Ga-labeled bombesin antagonist (RM2) in the detection of primary prostate cancer comparing with [(18)F]fluoromethylcholine PET-CT and multiparametric MRI-a phase I/II study. Eur Radiol. 2023;33(1):472–482. doi: 10.1007/s00330-022-08982-2.
  • Bakker IL, Fröberg AC, Busstra MB, et al. GRPr antagonist (68)Ga-SB3 PET/CT imaging of primary prostate cancer in therapy-Naïve patients. J Nucl Med. 2021;62(11):1517–1523. doi: 10.2967/jnumed.120.258814.
  • Abouzayed A, Rinne SS, Sabahnoo H, et al. Preclinical evaluation of (99m)Tc-labeled GRPR antagonists maSSS/SES-PEG(2)-RM26 for imaging of prostate cancer. Pharmaceutics. 2021;13(2):182. doi: 10.3390/pharmaceutics13020182.
  • Ferguson S, Wuest M, Richter S, et al. A comparative PET imaging study of (44g)Sc- and (68)Ga-labeled bombesin antagonist BBN2 derivatives in breast and prostate cancer models. Nucl Med Biol. 2020;90-91:74–83. doi: 10.1016/j.nucmedbio.2020.10.005.
  • Nock BA, Kaloudi A, Kanellopoulos P, et al. [99mTc]Tc-DB15 in GRPR-Targeted tumor imaging with SPECT: from preclinical evaluation to the first clinical outcomes. Cancers. 2021;13(20):5093. doi: 10.3390/cancers13205093.
  • Zhang-Yin J, Provost C, Cancel-Tassin G, et al. A comparative study of peptide-based imaging agents [(68)Ga]Ga-PSMA-11, [(68)Ga]Ga-AMBA, [(68)Ga]Ga-NODAGA-RGD and [(68)Ga]Ga-DOTA-NT-20.3 in preclinical prostate tumour models. Nucl Med Biol. 2020;84–85:88–95. doi: 10.1016/j.nucmedbio.2020.03.005.
  • Chatalic KLS, Konijnenberg M, Nonnekens J, et al. In vivo stabilization of a gastrin-releasing peptide receptor antagonist enhances PET imaging and radionuclide therapy of prostate cancer in preclinical studies. Theranostics. 2016;6(1):104–117. doi: 10.7150/thno.13580.
  • Bratanovic IJ, Zhang C, Zhang Z, et al. A radiotracer for molecular imaging and therapy of gastrin-releasing peptide receptor-positive prostate cancer. J Nucl Med. 2022;63(3):424–430. doi: 10.2967/jnumed.120.257758.
  • Zhang H, Desai P, Koike Y, et al. Dual-modality imaging of prostate cancer with a fluorescent and radiogallium-labeled Gastrin-Releasing Peptide receptor antagonist. J Nucl Med. 2017;58(1):29–35. doi: 10.2967/jnumed.116.176099.
  • Chatalic KLS, Franssen GM, van Weerden WM, et al. Preclinical comparison of Al18F- and 68Ga-labeled gastrin-releasing peptide receptor antagonists for PET imaging of prostate cancer. J Nucl Med. 2014;55(12):2050–2056. doi: 10.2967/jnumed.114.141143.
  • Mansi R, Wang X, Forrer F, et al. Development of a potent DOTA-conjugated bombesin antagonist for targeting GRPr-positive tumours. Eur J Nucl Med Mol Imaging. 2011;38(1):97–107. doi: 10.1007/s00259-010-1596-9.
  • Baratto L, Duan H, Laudicella R, et al. Physiological (68)Ga-RM2 uptake in patients with biochemically recurrent prostate cancer: an atlas of semi-quantitative measurements. Eur J Nucl Med Mol Imaging. 2020;47(1):115–122. doi: 10.1007/s00259-019-04503-4.
  • Roivainen A, Kähkönen E, Luoto P, et al. Plasma pharmacokinetics, whole-body distribution, metabolism, and radiation dosimetry of 68Ga bombesin antagonist Bay 86-7548 in healthy men. J Nucl Med. 2013;54(6):867–872. doi: 10.2967/jnumed.112.114082.
  • Gnesin S, Cicone F, Mitsakis P, et al. First in-human radiation dosimetry of the gastrin-releasing peptide (GRP) receptor antagonist (68)Ga-NODAGA-MJ9. EJNMMI Res. 2018;8(1):108. doi: 10.1186/s13550-018-0462-9.
  • Kurth J, Krause BJ, Schwarzenböck SM, et al. First-in-human dosimetry of gastrin-releasing peptide receptor antagonist [(177)Lu]Lu-RM2: a radiopharmaceutical for the treatment of metastatic castration-resistant prostate cancer. Eur J Nucl Med Mol Imaging. 2020;47(1):123–135. doi: 10.1007/s00259-019-04504-3.
  • Dumont RA, Tamma M, Braun F, et al. Targeted radiotherapy of prostate cancer with a gastrin-releasing peptide receptor antagonist is effective as monotherapy and in combination with rapamycin. J Nucl Med. 2013;54(5):762–769. doi: 10.2967/jnumed.112.112169.
  • Koller L, Joksch M, Schwarzenböck S, et al. Preclinical comparison of the (64)Cu- and (68)Ga-labeled GRPR-Targeted compounds RM2 and AMTG, as well as first-in-Humans [(68)Ga]Ga-AMTG PET/CT. J Nucl Med. 2023;64(10):1654–1659. doi: 10.2967/jnumed.123.265771.
  • Schroeder RPJ, van Weerden WM, Krenning EP, et al. Gastrin-releasing peptide receptor-based targeting using bombesin analogues is superior to metabolism-based targeting using choline for in vivo imaging of human prostate cancer xenografts. Eur J Nucl Med Mol Imaging. 2011;38(7):1257–1266. doi: 10.1007/s00259-011-1775-3.
  • Sharifi N, Gulley JL, Dahut WL. An update on androgen deprivation therapy for prostate cancer. Endocr Relat Cancer. 2010;17(4):R305–15. doi: 10.1677/ERC-10-0187.
  • Sharifi N, Gulley JL, Dahut WL. Androgen deprivation therapy for prostate cancer. JAMA. 2005;294(2):238–244. doi: 10.1001/jama.294.2.238.
  • Guo Z, Yang X, Sun F, et al. A novel androgen receptor splice variant is up-regulated during prostate cancer progression and promotes androgen depletion-resistant growth. Cancer Res. 2009;69(6):2305–2313. doi: 10.1158/0008-5472.CAN-08-3795.
  • Watson PA, Chen YF, Balbas MD, et al. Constitutively active androgen receptor splice variants expressed in castration-resistant prostate cancer require full-length androgen receptor. Proc Natl Acad Sci U S A. 2010;107(39):16759–16765. doi: 10.1073/pnas.1012443107.
  • Filippi L, Frantellizzi V, Chiaravalloti A, et al. Prognostic and theranostic applications of positron emission tomography for a personalized approach to metastatic castration-resistant prostate cancer. Int J Mol Sci. 2021;22(6): 3036.
  • Qiao J, Grabowska MM, Forestier-Roman IS, et al. Activation of GRP/GRP-R signaling contributes to castration-resistant prostate cancer progression. Oncotarget. 2016;7(38):61955–61969. doi: 10.18632/oncotarget.11326.
  • Jin R, Yi Y, Yull FE, et al. NF-κB gene signature predicts prostate cancer progression. Cancer Res. 2014;74(10):2763–2772. doi: 10.1158/0008-5472.CAN-13-2543.
  • Terry S, Beltran H. The many faces of neuroendocrine differentiation in prostate cancer progression. Front Oncol. 2014;4:60. doi: 10.3389/fonc.2014.00060.
  • Merkens L, Sailer V, Lessel D, et al. Aggressive variants of prostate cancer: underlying mechanisms of neuroendocrine transdifferentiation. J Exp Clin Cancer Res. 2022;41(1):46. doi: 10.1186/s13046-022-02255-y.
  • Beltran H, Tomlins S, Aparicio A, et al. Aggressive variants of castration-resistant prostate cancer. Clin Cancer Res. 2014;20(11):2846–2850. doi: 10.1158/1078-0432.CCR-13-3309.
  • Beltran H, Prandi D, Mosquera JM, et al. Divergent clonal evolution of castration-resistant neuroendocrine prostate cancer. Nat Med. 2016;22(3):298–305. doi: 10.1038/nm.4045.
  • Wang Y, Wang Y, Ci X, et al. Molecular events in neuroendocrine prostate cancer development. Nat Rev Urol. 2021;18(10):581–596. doi: 10.1038/s41585-021-00490-0.
  • Alabi BR, Liu S, Stoyanova T. Current and emerging therapies for neuroendocrine prostate cancer. Pharmacol Ther. 2022;238:108255. doi: 10.1016/j.pharmthera.2022.108255.
  • Zaffuto E, Pompe R, Zanaty M, et al. Contemporary incidence and cancer control outcomes of primary neuroendocrine prostate cancer: a SEER database analysis. Clin Genitourin Cancer. 2017;15(5):e793–e800. doi: 10.1016/j.clgc.2017.04.006.
  • Akamatsu S, Inoue T, Ogawa O, et al. Clinical and molecular features of treatment-related neuroendocrine prostate cancer. Int J Urol. 2018;25(4):345–351. doi: 10.1111/iju.13526.
  • Beltran H, Demichelis F. Therapy considerations in neuroendocrine prostate cancer: what next? Endocr Relat Cancer. 2021;28(8):T67–T78. doi: 10.1530/ERC-21-0140.
  • Caire AA, Sun L, Ode O, et al. Delayed prostate-specific antigen recurrence after radical prostatectomy: how to identify and what are their clinical outcomes? Urology. 2009;74(3):643–647. doi: 10.1016/j.urology.2009.02.049.
  • Stephenson AJ, Kattan MW, Eastham JA, et al. Defining biochemical recurrence of prostate cancer after radical prostatectomy: a proposal for a standardized definition. J Clin Oncol. 2006;24(24):3973–3978. doi: 10.1200/JCO.2005.04.0756.
  • Van den Broeck T, van den Bergh RCN, Briers E, et al. Biochemical recurrence in prostate cancer: the European association of urology prostate cancer guidelines panel recommendations. Eur Urol Focus. 2020;6(2):231–234. doi: 10.1016/j.euf.2019.06.004.
  • Roach M, Hanks G, Thames H, et al. Defining biochemical failure following radiotherapy with or without hormonal therapy in men with clinically localized prostate cancer: recommendations of the RTOG-ASTRO phoenix consensus conference. Int J Radiat Oncol Biol Phys. 2006;65(4):965–974., doi: 10.1016/j.ijrobp.2006.04.029.
  • Cookson MS, Aus G, Burnett AL, et al. Variation in the definition of biochemical recurrence in patients treated for localized prostate cancer: the American urological association prostate guidelines for localized prostate cancer update panel report and recommendations for a standard in the reporting of surgical outcomes. J Urol. 2007;177(2):540–545. doi: 10.1016/j.juro.2006.10.097.
  • Herbert C, Liu M, Tyldesley S, et al. Biochemical control with radiotherapy improves overall survival in intermediate and high-risk prostate cancer patients who have an estimated 10-year overall survival of >90%. Int J Radiat Oncol Biol Phys. 2012;83(1):22–27. doi: 10.1016/j.ijrobp.2011.05.076.
  • Abramowitz MC, Li T, Buyyounouski MK, et al. The phoenix definition of biochemical failure predicts for overall survival in patients with prostate cancer. Cancer. 2008;112(1):55–60. doi: 10.1002/cncr.23139.
  • Kapadia NS, Olson K, Sandler HM, et al. Interval to biochemical failure as a biomarker for cause-specific and overall survival after dose-escalated external beam radiation therapy for prostate cancer. Cancer. 2012;118(8):2059–2068. doi: 10.1002/cncr.26498.
  • Wieser G, Popp I, Christian Rischke H, et al. Diagnosis of recurrent prostate cancer with PET/CT imaging using the gastrin-releasing peptide receptor antagonist (68)Ga-RM2: preliminary results in patients with negative or inconclusive [(18)F]Fluoroethylcholine-PET/CT. Eur J Nucl Med Mol Imaging. 2017;44(9):1463–1472. doi: 10.1007/s00259-017-3702-8.
  • Minamimoto R, Sonni I, Hancock S, et al. Prospective evaluation of (68)Ga-RM2 PET/MRI in patients with biochemical recurrence of prostate cancer and negative findings on conventional imaging. J Nucl Med. 2018;59(5):803–808. doi: 10.2967/jnumed.117.197624.
  • Baratto L, Song H, Duan H, et al. PSMA- and GRPR-Targeted PET: results from 50 patients with biochemically recurrent prostate cancer. J Nucl Med. 2021;62(11):1545–1549. doi: 10.2967/jnumed.120.259630.
  • Minamimoto R, Hancock S, Schneider B, et al. Pilot comparison of 68Ga-RM2 PET and 68Ga-PSMA-11 PET in patients with biochemically recurrent prostate cancer. J Nucl Med. 2016;57(4):557–562. doi: 10.2967/jnumed.115.168393.
  • Cimitan M, Evangelista L, Hodolič M, et al. Gleason score at diagnosis predicts the rate of detection of 18F-choline PET/CT performed when biochemical evidence indicates recurrence of prostate cancer: experience with 1,000 patients. J Nucl Med. 2015;56(2):209–215. doi: 10.2967/jnumed.114.141887.
  • Maina T, Bergsma H, Kulkarni HR, et al. Preclinical and first clinical experience with the gastrin-releasing peptide receptor-antagonist [68Ga]SB3 and PET/CT. Eur J Nucl Med Mol Imaging. 2016;43(5):964–973. doi: 10.1007/s00259-015-3232-1.