696
Views
94
CrossRef citations to date
0
Altmetric
Trends in Molecular Medicine

Neuregulin 1 and schizophrenia

, , , &
Pages 62-71 | Published online: 08 Jul 2009

References

  • Ragland JD. Profiles of neuropsychologic function in schizo-phrenia. Curr Psychiatry Rep 2003;5:299–302.
  • Cardno AG, Marshall EJ, Cold B, Macdonald AM, Rib-chester TR, Davies NJ, et al. Hentahility estimates for psy-chotic disorders: the Maudsley twin psychosis series. Arch Gen Psychiatry 1999;56:162–8.
  • Tsuang MT, Stone WS, Faraone SV. Genes, environment and schizophrenia. Br J Psychiatry Suppl 2001;40:S18–24.
  • St Clair D, Blackwood D, Muir W, Carothers A, Walker M, Spowart G, et al. Association within a family of a balanced autosomal translocation with major mental illness. Lancet 1990;336:13–6.
  • Carlsson A, Waters N, Waters S, Carlsson ML. Network interactions in schizophrenia - therapeutic implications. Brain Res Brain Res Rev 2000;31:342–9.
  • Kim JS, Kornhuber HH, Schmid-Burgk W, Holzmuller B. Low cerebrospinal fluid glutamate in schizophrenic patients and a new hypothesis on schizophrenia. Neurosci Lett 1980; 20:379–82.
  • Ibrahim HM, Hogg AJ, Jr, Healy DJ, Haroutunian V, Davis KL, Meador-Woodruff JH. Ionotropic glutamate receptor binding and subumt mRNA expression in thalamic nuclei in schizophrenia. Am J Psychiatry 2000;157:1811–23.
  • Gao XM, Sakai K, Roberts RC, Conley RR, Dean B, Tamminga CA. Ionotropic glutamate receptors and expres-sion of N-methyl-D-aspartate receptor subumts in subregions of human hippocampus: effects of schizophrenia. Am J Psychiatry 2000;157:1141–9.
  • Arvanov VL, Liang X, Schwartz J, Grossman S, Wang RY. Clozapine and haloperidol modulate N-methyl-D-aspartate-and non-N-methyl-D-aspartate receptor-mediated neuro-transmission in rat prefrontal cortical neurons in vitro. J Pharmacol Exp Ther 1997;283:226–34.
  • Carlsson M, Carlsson A. Interactions between glutamatergic and monoaminergic systems within the basal ganglia - implications for schizophrenia and Parkinson's disease. Trends Neurosci 1990;13:272–6.
  • Kotecha SA, Oak JN, Jackson MF, Perez Y, Orser BA, Van Tol HH, et al. A D2 class dopamine receptor transactivates a receptor tyrosine kinase to inhibit NMDA receptor transmis-sion. Neuron 2002;35: 1111–22.
  • Feinberg I. Schizophrenia: caused by a fault in programmed synaptic elimination during adolescence? J Psychiatr Res 1982; 17:319–34.
  • Weinberger DR. Implications of normal brain development for the pathogenesis of schizophrenia. Arch Gen Psychiatry 1987;44:660–9.
  • Murray RM, Lewis SW. Is schizophrenia a neurodevelop-mental disorder? BMJ (Clinical Research ed.) 1987;295:681–2.
  • Lewis SW, Murray RM. Obstetric complications, neuro-developmental deviance, and risk of schizophrenia. J Psychiatr Res 1987;21:413–21.
  • Hakak Y, Walker JR, Li C, Wong WH, Davis KL, Buxbaum JD, et al. Genome-wide expression analysis reveals dysregula-tion of myelination-related genes in chronic schizophrenia. Proc Natl Acad Sci USA 2001;98:4746–51.
  • McGrath JJ, Feron FP, Burne TH, Mackay-Sim A, Eyles DW. The neurodevelopmental hypothesis of schizophrenia: a review of recent developments. Ann Med 2003;35:86–93.
  • Ashe PC, Berry MD, Boulton AA. Schizophrenia, a neuro-degenerative disorder with neurodevelopmental antecedents. Prog Neuropsychopharmacol Biol Psychiatry 200125691–707.
  • Lieberman JA, Perkins D, Belger A, Chakos M, Jarskog F, Boteva K, et al. The early stages of schizophrenia: speculations on pathogenesis, pathophysiology, and therapeutic ap-proaches. Biol Psychiatry 2001;50:884–97.
  • O'Donovan MC, Owen M J. Candidate-gene association studies of schizophrenia. Am J Hum Genet 1999;65:587–92.
  • Stefansson H, Sigurdsson E, Steinthorsdottir V, Bjornsdottir S, Sigmundsson T, Ghosh S, et al. Neuregulin 1 and suscep-tibility to schizophrenia. Am J Hum Genet 2002;71:877–92.
  • Chumakov I, Blumenfeld M, Guerassimenko 0, Cavarec L, Palicio M, Abderrahim H, et al. Genetic and physiological data implicating the new human gene G72 and the gene for D-amino acid oxidase in schizophrenia. Proc Natl Acad Sci USA 2002;99: 13675–80.
  • Straub RE, Jiang Y, MacLean CJ, Ma Y, Webb BT, Myakishev MV, et al. Genetic variation in the 6p22.3 gene DTNBP1, the human ortholog of the mouse dysbindin gene, is associated with schizophrenia. Am J Hum Genet 2002;71: 337–48.
  • Stefansson H, Sarginson J, Kong A, Yates P, Steinthorsdottir V, Gudfinnsson E, et al. Association of neuregulin 1 with schizophrenia confirmed in a Scottish population. Am J Hum Genet 2003;72:83–7.
  • Williams NM, Preece A, Spurlock G, Norton N, Williams HJ, Zammit S, et al. Support for genetic variation in neuregulin 1 and susceptibility to schizophrenia. Mol Psychiatry 2003; 8: 485–7.
  • Schwab SG, Knapp M, Mondabon S, Hallmayer J, Borrmann-Hassenbach M, Albus M, et al. Support for association of schizophrenia with genetic variation in the 6p22.3 gene, dysbindin, in sib-pair families with linkage and in an additional sample of triad families. Am J Hum Genet 2003; 72:185–90.
  • Morris DW, McGhee KA, Schwaiger S, Scully P, Quinn J, Meagher D, et al. No evidence for association of the dysbindin gene [DTNBP1] with schizophrenia in an Irish population-based study. Schizophr Res 2003;60:167–72.
  • Hattori E, Liu C, Badner JA, Bonner TI, Christian SL, Maheshwari M, et al. Polymorphisms at the G72/G30 Gene Locus, on 13q33, Are Associated with Bipolar Disorder in Two Independent Pedigree Series. Am J Hum Genet 2003;72: 1131–40.
  • Liu H, Heath SC, Sobin C, Roos JL, Galke BL, Blundell ML, et al. Genetic variation at the 22q11 PRODH2/DGCR6 locus presents an unusual pattern and increases susceptibility to schizophrenia. Proc Natl Acad Sci USA 2002;99:3717–22.
  • Li T, Sham PC, Vallada H, Xie T, Tang X, Murray RM, et al. Preferential transmission of the high activity allele of COMT in schizophrenia. Psychiatr Genet 1996;6:131–3.
  • Daniels JK, Williams NM, Williams J, Jones LA, Cardno AG, Murphy KC, et al. No evidence for allelic association between schizophrenia and a polymorphism determining high or low catechol 0-methyltransferase activity. Am J Psychiatry 1996; 153:268–70.
  • Wei J, Hemmings GP. Lack of evidence for association between the COMT locus and schizophrenia. Psychiatr Genet 1999;9:183–6.
  • Shifman S, Bronstein M, Sternfeld M, Pisante-Shalom A, Lev-Lehman E, Weizman A, et al. A highly significant association between a COMT haplotype and schizophrenia. Am J Hum Genet 2002;71:1296–302.
  • Fan JB, Ma J, Zhang CS, Tang JX, Gu NF, Feng GY, et al. A family-based association study of T1945C polymorphism in the proline dehydrogenase gene and schizophrenia in the Chinese population. Neurosci Lett 2003;338:252–4.
  • Williams HJ, Williams N, Spurlock G, Norton N, Ivanov D, McCreadie RG, et al. Association between PRODH and schizophrenia is not confirmed. Mol Psychiatry 2003;8:644–5.
  • Pulver AE, Lasseter VK, Kasch L, Wolyniec P, Nestadt G, Blouin JL, et al. Schizophrenia: a genome scan targets chromosomes 3p and 8p as potential sites of susceptibility genes. Am J Med Genet 1995;60:252–60.
  • Kendler KS, MacLean CJ, O'Neill FA, Burke J, Murphy B, Duke F, et al. Evidence for a schizophrenia vulnerability locus on chromosome 8p in the Irish Study of High-Density Schizophrenia Families. Am J Psychiatry 1996;153: 1534–40.
  • Blouin JL, Dombroski BA, Nath SK, Lasseter VK, Wolyniec PS, Nestadt G, et al. Schizophrenia susceptibility loci on chromosomes 13q32 and 8p21. Nat Genet 1998;20:70–3.
  • Gurling HM, Kalsi G, Brynjolfson J, Sigmundsson T, Sherrington R, Mankoo BS, et al. Genomewide genetic linkage analysis confirms the presence of susceptibility loci for schizophrenia, on chromosomes 1q32.2, 5q33.2, and 8p21-22 and provides support for linkage to schizophrenia, on chromosomes 11q23.3-24 and 20q12.1-11.23. Am J Hum Genet 2001;68: 661–73.
  • Brzustowicz LM, Honer WG, Chow LW, Little D, Hogan J, Hodgkinson K, et al. Linkage of familial schizophrenia to chromosome 13q32. Am J Hum Genet 1999;65:1096–103.
  • Krystal JH, D'Souza DC, Petrakis IL, Belger A, Berman RM, Charney DS, et al. NMDA agonists and antagonists as probes of glutamatergic dysfunction and pharmacotherapies in neuropsychiatric disorders. Harv Rev Psychiatry 1999;7:125–43.
  • Mohn AR, Gainetdinov RR, Caron MG, Koller BH. Mice with reduced NMDA receptor expression display behaviors related to schizophrenia. Cell 1999;98:427–36.
  • Gainetdinov RR, Mohn AR, Caron MG. Genetic animal models: focus on schizophrenia. Trends Neurosci 200124.527–33.
  • Gerlai R, Pisacane P, Erickson S. Heregulin, but not ErbB2 or ErbB3, heterozygous mutant mice exhibit hyperactivity in multiple behavioral tasks. Behav Brain Res 2000;109: 219–27.
  • Ozaki M, Sasner M, Yano R, Lu HS, Buonanno A. Neuregulin-beta induces expression of an NMDA-receptor subunit. Nature 1997;390:691–4.
  • Zavitsanou K, Ward PB, Huang XF. Selective alterations in ionotropic glutamate receptors in the anterior cingulate cortex in schizophrenia. Neuropsychopharmacology 2002;27:826–33.
  • Noga JT, Hyde TM, Herman MM, Spurney CF, Bigelow LB, Weinberger DR, et al. Glutamate receptors in the postmortem striatum of schizophrenic, suicide, and control brains. Synapse 1997;27:168–76.
  • Fischbach GD, Rosen KM. ARIA: a neuromuscular junction neuregulin. Annu Rev Neurosci 1997;20:429–58.
  • Wang JY, Miller SJ, Falls DL. The N-terminal region of neuregulin isoforms determines the accumulation of cell surface and released neuregulin ectodomain. J Biol Chem 2001;276:2841–51.
  • Falls DL. Neuregulins: functions, forms, and signaling strategies. Exp Cell Res 2003;284:14–30.
  • Meyer D, Birchmeier C. Distinct isoforms of neuregulin are expressed in mesenchymal and neuronal cells during mouse development. Proc Natl Acad Sci USA 1994;91:1064–8.
  • Mirsky R, Jessen KR, Brennan A, Parkinson D, Dong Z, Meier C, et al. Schwann cells as regulators of nerve develop-ment. J Physiol Paris 2002;96:17–24.
  • Rio C, Rieff HI, Qi P, Khurana TS, Corfas G. Neuregulin and erbB receptors play a critical role in neuronal migration. Neuron 1997;19:39–50.
  • Anton ES, Marchionni MA, Lee KF, Rakic P. Role of GGF/ neuregulin signaling in interactions between migrating neurons and radial glia in the developing cerebral cortex. Development 1997;124:3501–10.
  • Cameron JS, Dryer L, Dryer SE. beta -Neuregulin-1 is required for the in vivo development of functional Ca2+-activated K+ channels in parasympathetic neurons. Proc Natl Acad Sci USA 2001;98: 2832–6.
  • Rieff HI, Raetzman LT, Sapp DW, Yeh HH, Siegel RE, Corfas G. Neuregulin induces GABA(A) receptor subunit expression and neurite outgrowth in cerebellar granule cells. J Neurosci 1999;19:10757–66.
  • Buonanno A, Fischbach GD. Neuregulin and ErbB receptor signaling pathways in the nervous system. Curr Opin Neurobiol 2001;11:287–96.
  • Bao J, Wolpowitz D, Role LW, Talmage DA. Back signaling by the Nrg-1 intracellular domain. J Cell Biol 2003;161:1133–41.
  • Steinthorsdottir V, Stefansson H, Ghosh S, Birgisdottir B, Bjornsdottir S, Fasquel AC, et al. Genomic organization, novel exons and splice variants of NRG1. Submitted.
  • Ma L, Huang YZ, Pitcher GM, Valtschanoff JG, Ma YH, Feng LY, et al. Ligand-dependent recruitment of the ErbB4 signaling complex into neuronal lipid rafts. J Neurosci 2003; 23:3164–75.
  • Huang YZ, Won S, Ali DW, Wang Q, Tanowitz M, Du QS, et al. Regulation of neuregulin signaling by PSD-95 interacting with ErbB4 at CNS synapses. Neuron 2000;26:443–55.
  • Holmes WE, Sliwkowski MX, Akita RW, Henzel WJ, Lee J, Park JW, et al. Identification of heregulin, a specific activator of p185erbB2. Science 1992;256:1205–10.
  • Peles E, Bacus SS, Koski RA, Lu HS, Wen D, Ogden SG, et al. Isolation of the neu/HER-2 stimulatory ligand: a 44 kd glycoprotein that induces differentiation of mammary tumor cells. Cell 1992;69:205–16.
  • Wen D, Peles E, Cupples R, Suggs SV, Bacus SS, Luo Y, et al. Neu differentiation factor: a transmembrane glycoprotein containing an EGF domain and an immunoglobulin homology unit. Cell 1992;69:559–72.
  • Pinkas-Kramarski R, Eilam R, Alroy I, Levkowitz G, Lonai P, Yarden Y. Differential expression of NDF/neuregulin recep-tors ErbB-3 and ErbB-4 and involvement in inhibition of neuronal differentiation. Oncogene 1997;15: 2803–15.
  • Plowman GD, Green JM, Culouscou JM, Carlton GW, Rothwell VM, Buckley S. Heregulin induces tyrosine phos-phorylation of HER4/p180erbB4. Nature 1993;366:473–5.
  • Sweeney C, Fambrough D, Huard C, Diamonti AJ, Lander ES, Cantley LC, et al. Growth factor-specific signaling pathway stimulation and gene expression mediated by ErbB receptors. J Biol Chem 2001;276:22685–98.
  • Carpenter G. Nuclear localization and possible functions of receptor tyrosine kinases. Curr Opin Cell Biol 2003;15:143–8.
  • Lau LF, Huganir RL. Differential tyrosine phosphorylation of N-methyl-D-aspartate receptor subunits. J Biol Chem 1995; 270:20036–41.
  • Ali DW, Salter MW. NMDA receptor regulation by Src kinase signalling in excitatory synaptic transmission and plasticity. Curr Opin Neurobiol 2001;11:336–42.
  • Tezuka T, Umemori H, Akiyama T, Nakanishi S, Yamamoto T. PSD-95 promotes Fyn-mediated tyrosine phos-phorylation of the N-methyl-D-aspartate receptor subunit NR2A. Proc Natl Acad Sci USA 1999;96: 435–40.
  • Nakazawa T, Tezuka T, Yamamoto T. [Regulation of NMDA receptor function by Fyn-mediated tyrosine phos-phorylation]. Nihon Shinkei Seishin Yakurigaku Zasshi 2002; 22:165–7.
  • Suzuki T, Okumura-Noji K. NMDA receptor subunits epsilon 1 (NR2A) and epsilon 2 (NR2B) are substrates for Fyn in the postsynaptic density fraction isolated from the rat brain. Biochem Biophys Res Commun 1995;216:582–8.
  • Garcia RA, Vasudevan K, Buonanno A. The neuregulin receptor ErbB-4 interacts with PDZ-containing proteins at neuronal synapses. Proc Natl Acad Sci USA 2000;97: 3596–601.
  • Yaka R, He DY, Phamluong K, Ron D. Pituitary Adenylate Cyclase-activating Polypeptide (PACAP(1-38)) Enhances N-Methyl-D-aspartate Receptor Function and Brain-derived Neurotrophic Factor Expression via RACK1. J Biol Chem 2003;278:9630–8.
  • Ohnuma T, Kato H, Arai H, McKenna PJ, Emson PC. Expression of Fyn, a non-receptor tyrosine kinase in pre-frontal cortex from patients with schizophrenia and its correlation with clinical onset. Brain Res Mol Brain Res 2003;112:90–4.
  • Ishiguro H, Saito T, Shibuya H, Toru M, Arinami T. Mutation and association analysis of the Fyn kinase gene with alcoholism and schizophrenia. Am J Med Genet 200096: 716–20.
  • Ozaki M, Kishigami S, Yano R. Expression of receptors for neuregulins, ErbB2, ErbB3 and ErbB4, in developing mouse cerebellum. Neurosci Res 1998;30: 351–4.
  • Ozaki M, Tohyama K, Kishida H, Buonanno A, Yano R, Hashikawa T. Roles of neuregulin in synaptogenesis between mossy fibers and cerebellar granule cells. J Neurosci Res 2000; 59:612–23.
  • Ozaki M. Analysis of patterned neuronal impulses and function of neuregulin. Neurosignals 2002;11:191–6.
  • Schmid RS, McGrath B, Berechid BE, Boyles B, Marchionni M, Sestan N, et al. Neuregulin 1-erbB2 signaling is required for the establishment of radial glia and their transformation into astrocytes in cerebral cortex. Proc Natl Acad Sci USA 2003;100:4251–6.
  • Hof PR, Haroutunian V, Copland C, Davis KL, Buxbaum JD. Molecular and cellular evidence for an oligodendrocyte abnormality in schizophrenia. Neurochem Res 2002; 27: 1193–200.
  • Marchionni MA, Goodearl AD, Chen MS, Bermingham-McDonogh 0, Kirk C, Hendricks M, et al. Glial growth factors are alternatively spliced erbB2 ligands expressed in the nervous system. Nature 1993;362: 312–8.
  • Lemke GE, Brockes JP. Identification and purification of glial growth factor. J Neurosci 1984;4:75–83.
  • Adlkofer K, Lai C. Role of neuregulins in glial cell devel-opment. Glia 2000;29:104–11.
  • Deininger PL, Batzer MA. Alu repeats and human disease. Mol Genet Metab 1999;67:183–93.
  • Knebelmann B, Forestier L, Drouot L, Quinones S, Chuet C, Benessy F, et al. Splice-mediated insertion of an Alu sequence in the COL4A3 mRNA causing autosomal recessive Alport syndrome. Hum Mol Genet 1995;4:675–9.
  • Mitchell GA, Labuda D, Fontaine G, Saudubray JM, Bonnefont JP, Lyonnet S, et al. Splice-mediated insertion of an Alu sequence inactivates ornithine delta-aminotransferase: a role for Alu elements in human mutation. Proc Natl Acad Sci USA 1991;88:815–9.
  • Vervoort R, Gitzelmann R, Lissens W, Liebaers I. A mutation (IVS8+0.6kbdelTC) creating a new donor splice site activates a cryptic exon in an Alu-element in intron 8 of the human beta-glucuronidase gene. Hum Genet 1998;103:686–93.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.