741
Views
39
CrossRef citations to date
0
Altmetric
Research Article

Clinical and biological importance of cytogenetic abnormalities in childhood and adult acute lymphoblastic leukemia

, &
Pages 492-503 | Published online: 08 Jul 2009

References

  • Mitelman F, Johansson B, Mertens F. Mitelman Database of Chromosome Aberrations in Cancer. http://cgap.nci.nih. gov/Chromosomes/Mitelman (search performed in April 2004).
  • Look AT. Oncogenic transcription factors in the human acute leukemias. Science 1997;278:1059–64.
  • Rowley JD. Chromosome translocations: dangerous liaisons revisited. Nat Rev Cancer 2001;1:245–50.
  • Greaves MF, Wiemels J. Origins of chromosome transloca-tions in childhood leukaemia. Nat Rev Cancer 2003;3:1–11.
  • Rabbitts TH, Stocks MR. Chromosome translocation products engender new intracellular therapeutic technolo-gies. Nat Med 2003;9:383–6.
  • Mitelman F, Johansson B, Mertens F. Fusion genes and rearranged genes as a linear function of chromosome aber-rations in cancer. Nat Genet 2004;36:331–4.
  • Pui C-H, Crist WM. Cytogenetic abnormalities in childhood acute lymphoblastic leukemia correlates with clinical features and treatment outcome. Leuk Lymphoma 1992; 7: 259–74.
  • Faderl S, Kantarjian HM, Talpaz M, Estrov Z. Clinical significance of cytogenetic abnormalities in adult acute lymphoblastic leukemia. Blood 1998;91:3995–4019.
  • Harrison CJ. Acute lymphoblastic leukaemia. Best Pract Res Clin Haematol 2001;14:593–607.
  • Nowell PC, Hungerford DA. A minute chromosome in human chronic granulocytic leukemia. Science 1960;132:1497.
  • Hauschka TS. The chromosomes in ontogeny and oncogeny. Cancer Res 1961;21:957–74.
  • Sandberg AA, Ishihara T, Miwa T, Hauschka TS. The in vivo chromosome constitution of marrow from 34 human leukemias and 60 nonleukemic controls. Cancer Res 1961;21: 678–89.
  • Hauschka TS. Chromosome patterns in primary neoplasia. Exp Cancer Res 1963;9:86–98.
  • Nowell PC, Hungerford DA. Chromosome changes in human leukemia and a tentative assessment of their signi-ficance. Ann N Y Acad Sci 1964;113:654–62.
  • Baikie AG. Chromosomes and leukaemia. Acta Haematol 1966;36:157–73.
  • Sandberg AA. The chromosomes and causation of human cancer and leukemia. Cancer Res 1966;26:2064–81.
  • Whang-Peng J, Knutsen T, Ziegler J, Leventhal B. Cyto-genetic studies in acute lymphocytic leukemia: special emphasis in long-term survival. Med Pediatr Oncol 1976;2: 333–51.
  • Gunz FW, Fitzgerald PH. Chromosomes and leukemia. Blood 1964;23:391100.
  • Nowell PC. Foundations in cancer research. Chromosomes and cancer: the evolution of an idea. Adv Cancer Res 199362: 1–17.
  • Propp S, Lizzi FA. Philadelphia chromosome in acute lymphocytic leukemia. Blood 1970;36:353–60.
  • Rowley JD. A new consistent chromosomal abnormality in chronic myelogenous leukemia identified by quinacrine fluorescence and Giemsa staining. Nature 1973;243:290–3.
  • Third International Workshop on Chromosomes in Leuke-mia, 1980. Introduction. Cancer Genet Cytogenet 1981;4: 96–9.
  • Mertens F, Johansson B, Mitelman F. Dichotomy of hyper-diploid acute lymphoblastic leukemia on the basis of the distribution of gained chromosomes. Cancer Genet Cyto-genet 1996;92:8–10.
  • Raimondi SC, Pui C-H, Hancock ML, Behm FG, Filatov L, Rivera GK. Heterogeneity of hyperdiploid (51–67) childhood acute lymphoblastic leukemia. Leukemia 1996;10: 213–24.
  • Paulsson K, Panagopoulos I, Knuutila S, Jee KJ, Garwicz S, Fioretos T, et al. Formation of trisomies and their parental origin in hyperdiploid childhood acute lymphoblastic leuke-mia. Blood 2003;102:3010–5.
  • Oshimura M, Freeman Al, Sandberg AA. Chromosomes and causation of human cancer and leukemia. XXVI. Banding studies in acute lymphoblastic leukemia (ALL). Cancer 1977; 40:1161–72.
  • Mitelman F, Andersson-Anvret M, Brandt L, Catovsky D, Klein G, Manolov G, et al. Reciprocal 8;14 translocation in EBV-negative B-cell acute lymphocytic leukemia with Bur-kitt-type cells. Int J Cancer 1979;24:27–33.
  • Williams DL, Look AT, Melvin SL, Roberson PK, Dahl G, Flake T, et al. New chromosomal translocations correlate with specific immunophenotypes of childhood acute lym-phoblastic leukemia. Cell 1984;36:101–9.
  • Dube ID, Raimondi SC, Pi D, Kalousek DK. A new trans-location, t(10;14)(q24;q11), in T cell neoplasia. Blood 1986; 67:1181–4.
  • Kearney L. Molecular cytogenetics. Best Pract Res Clin Haematol 2001;14:645–69.
  • Romana SP, Le Coniat M, Berger R. t(12;21): a new recurrent translocation in acute lymphoblastic leukemia. Genes Chromosomes Cancer 1994;9:186–91.
  • Borkhardt A, Cazzaniga G, Viehmann S, Valsecchi MG, Ludwig WD, Burci L, et al. Incidence and clinical relevance of TEL/AML1 fusion genes in children with acute lympho-blastic leukemia enrolled in the German and Italian multi-center therapy trials. Blood 1997;90:571–7.
  • Andreasson P, Hoglund M, Bekassy AN, Garwicz S, Heldrup J, Mitelman F, et al. Cytogenetic and FISH studies of a single center consecutive series of 152 childhood acute lympho-blastic leukemias. Eur J Haematol 2000;65:40–51.
  • Bernard OA, Busson-LeConiat M, Ballerini P, Mauchauffe M, Della Valle V, Monni R, et al. A new recurrent and specific cryptic translocation, t(5;14)(q35;q32), is associated with expression of the Hox11L2 gene in T acute lympho-blastic leukemia. Leukemia 2001;15:1495–1504.
  • Berger R, Dastugue N, Busson M, Van Den Akker J, Perot C, Ballerini P, et al. t(5;14)/HOX11L2-positive T-cell acute lymphoblastic leukemia. A collaborative study of the Groupe Francais de Cytogenetique Hematologique (GFCH). Leuke-mia 2003;17: 1851–7.
  • Robinson HM, Taylor KR, Jalali GR, Cheung KL, Harrison CJ, Moorman AV. t(14;19)(q32;q13): a recurrent transloca-tion in B-cell precursor acute lymphoblastic leukemia. Genes Chromosomes Cancer 2004;39:88–92.
  • Johansson B, Mertens F, Mitelman F. Primary vs. secondary neoplasia-associated chromosomal abnormalities - balanced rearrangements vs. genomic imbalances? Genes Chromo-somes Cancer 1996;16:155–63.
  • Harris RL, Harrison CJ, Martineau M, Taylor KR, Moor-man AV. Is trisomy 5 a distinct cytogenetic subgroup in acute lymphoblastic leukemia? Cancer Genet Cytogenet 2004;148: 159–62.
  • Calero Moreno TM, Gustafsson G, Garwicz S, Grander D, Jonmundsson GK, Frost BM, et al. Deletion of the Ink4-locus (the p16ink4a, p14ARF and p15ink4b genes) predicts relapse in children with ALL treated according to the Nordic protocols NOPHO-86 and NOPHO-92. Leukemia 2002;16: 2037–45.
  • Erikson J, Finger L, Sun L, ar-Rushdi A, Nishikura K, Minowada J, et al. Deregulation of c-myc by translocation of the alfa-locus of the T-cell receptor in T-cell leukemias. Science 1986;232:884–6.
  • Care A, Cianetti L, Giampaolo A, Sposi NM, Zappavigna V, Mavilio F, et al. Translocation of c-myc into the immuno-globulin heavy-chain locus in human acute B-cell leukemia. A molecular analysis. EMBO J 1986;5:905–11.
  • Chan LC, Karhi KK, Rayter SI, Heisterkamp N, Eridani S, Powles R, et al. A novel abl protein expressed in Philadelphia chromosome positive acute lymphoblastic leukaemia. Nature 1987;325:635–7.
  • Finver SN, Martiniere C, Kagan J, Cavenee W, Croce CM. The chromosome 11 region flanking the t(11;14) breakpoint in human T-ALL is deleted in Wilms' tumor hybrids. Oncogene Res 1989;5: 143–8.
  • Grimaldi JC, Meeker TC. The t(5;14) chromosomal trans-location in a case of acute lymphocytic leukemia joins the interleukin-3 gene to the immunoglobulin heavy chain gene. Blood 1989;73:2081–5.
  • Kagan J, Finger LR, Letofsky J, Finan J, Nowell PC, Croce CM. Clustering of breakpoints on chromosome 10 in acute T-cell leukemias with the t(10;14) chromosome transloca-tion. Proc Natl Acad Sci USA 1989;86:4161–5.
  • Oliveira AM, Hsi BL, Weremowicz S, Rosenberg AE, Dal Cin P, Joseph N, et al. USP6 (Tre2) fusion oncogenes in aneurysmal bone cyst. Cancer Res 2004;64:1920–3.
  • Gilliland DG. Molecular genetics of human leukemias: new insights into therapy. Semin Hematol 2002;39:6–11.
  • Secker-Walker LM, Lawler SD, Hardisty RM. Prognostic implications of chromosomal findings in acute lymphoblastic leukaemia at diagnosis. BMJ 1978;2:1529–30.
  • Brodeur GM, Williams DL, Look AT, Bowman WP, Kalwinsky DK. Near-haploid acute lymphoblastic leukemia: a unique subgroup with a poor prognosis? Blood 1981;58: 14–9.
  • Pui C-H, Carroll A J, Raimondi SC, Land VJ, Crist WM, Shuster JJ, et al. Clinical presentation, karyotypic charac-terization, and treatment outcome of childhood acute lymphoblastic leukemia with a near-haploid or hypodiploid line. Blood 1990;75: 1170–7.
  • Gibbons B, MacCallum P, Watts E, Rohatiner AZS, Webb D, Katz FE, et al. Near haploid acute lymphoblastic leukemia: seven new cases and a review of the literature. Leukemia 1991;5:738–43.
  • Chessells JM, Swansbury GJ, Reeves B, Bailey CC, Richards SM. Cytogenetics and prognosis in childhood lymphoblastic leukaemia: results of MRC UKALL X. Br J Haematol 1997; 99:93–100.
  • Heerema NA, Nachman JB, Sather HN, Sensel MG, Lee MK, Hutchinson R, et al. Hypodiploidy with less than 45 chromosomes confers adverse risk in childhood acute lymphoblastic leukemia: a report from the Children's Cancer Group. Blood 1999;94:4036–46.
  • Pui C-H, Williams DL, Roberson PK, Raimondi SC, Behm FG, Lewis SH, et al. Correlation of karyotype and immuno-phenotype in childhood acute lymphoblastic leukemia. J Clin Oncol 1988;6:56–61.
  • Secker-Walker LM, Chessells JM, Stewart EL, Swansbury GJ, Richards S, Lawler SD. Chromosomes and other prog-nostic factors in acute lymphoblastic leukaemia: a long-term follow-up. Br J Haematol 1989;72:336–42.
  • Secker-Walker LM, Prentice HG, Durrant J, Richards S, Hall E, Harrison G. Cytogenetics adds independent prognostic information in adults with acute lymphoblastic leukaemia on MRC trial UKALL XA. Br J Haematol 1997;96:601–10.
  • Forestier E, Johansson B, Gustafsson G, Borgstrom G, Kerndrup G, Johannsson J, et al. Prognostic impact of karyotypic findings in childhood acute lymphoblastic leu-kaemia: a Nordic series comparing two treatment periods. Br J Haematol 2000;110:147–53.
  • Raimondi SC, Zhou Y, Mathew S, Shurtleff SA, Sandlund JT, Rivera GK, et al. Reassessment of the prognostic significance of hypodiploidy in pediatric patients with acute lymphoblastic leukemia. Cancer 2003;98:2715–22.
  • Bloomfield CD, Goldman Al, Alimena G, Berger R, Borgstrom GH, Brandt L, et al. Chromosomal abnormalities identify high-risk and low-risk patients with acute lympho-blastic leukemia. Blood 1986;67:415–20.
  • Jackson JF, Boyett J, Pullen J, Brock B, Patterson R, Land V, et al. Favorable prognosis associated with hyperdiploidy in children with acute lymphocytic leukemia correlates with extra chromosome 6. A Pediatric Oncology Group study. Cancer 1990;66:1183–9.
  • Behm FG, Raimondi SC, Schell MJ, Look AT, Rivera GK, Pui C-H. Lack of CD45 antigen on blast cells in childhood acute lymphoblastic leukemia is associated with chromoso-mal hyperdiploidy and other favorable prognostic features. Blood 1992;79: 1011–6.
  • Harris MB, Shuster JJ, Carroll A, Look AT, Borowitz MJ, Crist WM, et al. Trisomy of leukemic cell chromosomes 4 and 10 identifies children with B-progenitor cell acute lymphoblastic leukemia with a very low risk of treatment failure: a Pediatric Oncology Group study. Blood 1992;79: 3316–24.
  • Heerema NA, Sather HN, Sensel MG, Zhang T, Hutchinson RJ, Nachman JB, et al. Prognostic impact of trisoinies of chromosomes 10, 17, and 5 among children with acute lymphoblastic leukemia and high hyperdiploidy (>50 chromosomes). J Clin Oncol 2000;18:1876–87.
  • Moorman AV, Richards SM, Martineau M, Cheung KL, Robinson HM, Jalali GR, et al. Outcome heterogeneity in childhood high-hyperdiploid acute lymphoblastic leukemia. Blood 2003;102:2756–62.
  • Shikano T, Kaneko Y, Takazawa M, Ueno N, Ohkawa M, Fujimoto T. Balanced and unbalanced 1;19 translocation-associated acute lymphoblastic leukemias. Cancer 1986;58: 2239–43.
  • Crist WM, Carroll AJ, Shuster JJ, Behm FG, Whitehead M, Vietti TJ, et al. Poor prognosis of children with pre-B acute lymphoblastic leukemia is associated with the t(1;9)(q23;p13): a Pediatric Oncology Group study. Blood 1990;76:117–22.
  • Raimondi SC, Behm FG, Roberson PK, Williams DL, Pui C-H, Crist WM, et al. Cytogenetics of pre-B-cell acute lymphoblastic leukemia with emphasis on prognostic im-plications of the t(1;19). J Clin Oncol 1990;8: 1380–8.
  • Secker-Walker LM, Berger R, Fenaux P, Lai JL, Nelken B, Garson M, et al. Prognostic significance of the balanced t(1;19) and unbalanced der(19)t(1;19) translocations in acute lymphoblastic leukemia. Leukemia 1992;6: 363–9.
  • Borowitz MJ, Hunger SP, Carroll AJ, Shuster JJ, Pullen DJ, Steuber CP, et al. Predictability of the t(1;19)(q23;p13) from surface antigen phenotype: implications for screening cases of childhood acute lymphoblastic leukemia for molecular analysis: a Pediatric Oncology Group study. Blood 1993;82: 1086–91.
  • Pui C-H, Raimondi SC, Hancock ML, Rivera GK, Ribeiro RC, Mahmoud HH, et al. Immunologic, cytogenetic, and clinical characterization of childhood acute lymphoblastic leukemia with the t(1;19)(q23;p13) or its derivative. J Clin Oncol 1994;12: 2601–6.
  • Groupe Francais de Cytogênétique Hématologique. Cyto-genetic abnormalities in adult acute lymphoblastic leukemia: correlations with hematologic findings and outcome. Blood 1996;87:3135–42.
  • Uckun FM, Sensel MG, Sather HN, Gaynon PS, Arthur DC, Lange BJ, et al. Clinical significance of translocation t(1;19) in childhood acute lymphoblastic leukemia in the context of contemporary therapies: a report from the Childrens Cancer Group. J Clin Oncol 1998;16:527–35.
  • Foa R, Vitale A, Mancini M, Cuneo A, Mecucci C, Elia L, et al. E2A-PBX1 fusion in adult acute lymphoblastic leukaemia: biological and clinical features. Br J Haematol 2003; 120: 484–7.
  • Arthur DC, Bloomfield CD, Lindquist LL, Nesbit ME. Translocation 4;11 in acute lymphoblastic leukemia: clinical characteristics and prognostic significance. Blood 1982; 59: 96–9.
  • Lampert F, Harbott J, Ludwig W-D, Bartram C-R, Ritter J, Gerein V, et al. Acute leukemia with chromosome transloca-tion (4;11): 7 new patients and analysis of 71 cases. Blut 1987; 54:325–35.
  • Pui C-H, Frankel LS, Carroll AJ, Raimondi SC, Shuster JJ, Head DR, et al. Clinical characteristics and treatment outcome of childhood acute lymphoblastic leukemia with the t(4;11)(q21;q23): a collaborative study of 40 cases. Blood 1991;77:/10 7.
  • Behm FG, Smith FOG, Raimondi SC, Pui C-H, Bernstein ID. Human homologue of the rat chondroitin sulfate proteogly-can, NG2, detected by monoclonal antibody 7.1, identifies childhood acute lymphoblastic leukemias with t(4;11)(q21;q23) or t(11;19)(q23;p13) and MLL gene rearran-gements. Blood 1996;87: 1134–9.
  • Johansson B, Moorman AV, Haas OA, Watmore AE, Cheung KL, Swanton S, et al. Hematologic malignancies with t(4;11)(q21;q23) - a cytogenetic, morphologic, immuno-phenotypic and clinical study of 183 cases. Leukemia 1998;12: 779–87.
  • Heerema NA, Sather HN, Ge J, Arthur DC, Hilden JM, Trigg ME, et al. Cytogenetic studies of infant acute lympho-blastic leukemia: poor prognosis of infants with t(4;11) - a report of the Children's Cancer Group. Leukemia 1999;13: 679–86.
  • Wetzler M, Dodge RK, Mrozek K, Carroll AJ, Tantravahi R, Block AW, et al. Prospective karyotype analysis in adult acute lymphoblastic leukemia: the Cancer and Leukemia Group B experience. Blood 1999;93:3983–93.
  • Pui C-H, Gaynon PS, Boyett JM, Chessells JM, Baruchel A, Kamps W, et al. Outcome of treatment in childhood acute lymphoblastic leukaemia with rearrangements of the 11q23 chromosomal region. Lancet 2002;359: 1909–15.
  • Kaleem Z, Shuster JJ, Carroll AJ, Borowitz MJ, Pullen DJ, Camitta BM, et al. Acute lymphoblastic leukemia with an unusual t(8;14)(q11.2;q32): a Pediatric Oncology Group study. Leukemia 2000;14: 238–40.
  • Moore S, Suttle J, Bain S, Story C, Rice M. Acute lymphoblastic leukemia characterized by t(8;14)(q11.2;q32). Cancer Genet Cytogenet 2003;141: 1–4.
  • Mazoyer G, Ffrench M, Magaud JP, Manel AM, Charrin C, Gentilhomme 0, et al. B-cell acute lymphoblastic leukaemia: clinical and biological aspects. Clin Lab Haematol 1988;10: 149–57.
  • Lai JL, Fenaux P, Zandecki M, Nelken B, Huart JJ, Deminatti M. Cytogenetic studies in 30 patients with Burkitt's lymphoma or L3 acute lymphoblastic leukemia with special reference to additional chromosome abnormal-ities. Ann Genet 1989;32:26–32.
  • Carroll AJ, Raimondi SC, Williams DL, Behm FG, Borowitz M, Castleberry RP, et al. tdic(9;12): a nonrandom chromo-some abnormality in childhood B-cell precursor acute lymphoblastic leukemia: a Pediatric Oncology Group study. Blood 1987;70:1962–5.
  • Mahmoud H, Carroll AJ, Behm F, Raimondi SC, Schuster J, Borowitz M, et al. The non-random dic(9;12) translocation in acute lymphoblastic leukemia is associated with B-progenitor phenotype and an excellent prognosis. Leukemia 1992;6:703–7.
  • United Kingdom Cancer Cytogenetics Group. Transloca-tions involving 9p and/or 12p in acute lymphoblastic leukemia. Genes Chromosomes Cancer 1992;5:255–9.
  • Behrendt H, Charrin C, Gibbons B, Harrison CJ, Hawkins JM, Heerema NA, et al. Dicentric (9;12) in acute lympho-cytic leukemia and other hematological malignancies: report from a dic(9;12) study group. Leukemia 1995;9:102–6.
  • Rieder H, Schnittger S, Bodenstein H, Schwonzen M, Wörmann B, Berkovic D, et al. dic(9;20): a new recurrent chromosome abnormality in adult acute lymphoblastic leukemia. Genes Chromosomes Cancer 1995;13: 54–61.
  • Slater R, Smit E, Kroes W, Jotterand Bellomo M, Mühle-matter D, Harbott J, et al. A non-random chromosome abnormality found in precursor - B lineage acute lympho-blastic leukaemia: dic(9;20)(p1?3;q11). Leukemia 1995; 9: 1613–9.
  • Clark R, Byatt S-A, Bennett CF, Brama M, Martineau M, Moorman AV, et al. Monosomy 20 as a pointer to dicentric (9;20) in acute lymphoblastic leukemia. Leukemia 2000;14: 241–6.
  • Bloomfield CD, Peterson LC, Yunis JJ, Brunning RD. The Philadelphia chromosome (Phi) in adults presenting with acute leukaemia: a comparison of Ph1+ and Phi- patients. Br J Haematol 1977;36:347–58.
  • Crist W, Carroll A, Shuster J, Jackson J, Head D, Borowitz M, et al. Philadelphia chromosome positive childhood acute lymphoblastic leukemia: clinical and cytogenetic characteris-tics and treatment outcome. A Pediatric Oncology Group study. Blood 1990;76:489–94.
  • Beyermann B, Adams HP, Henze G. Philadelphia chromo-some in relapsed childhood acute lymphoblastic leukemia; a matched-pair analysis. J Clin Oncol 1997;15:2231–7.
  • Schrappe M, Arico M, Harbott J, Biondi A, Zimmermann M, Conter V, et al. Philadelphia chromosome-positive (Ph+) childhood acute lymphoblastic leukemia: good initial steroid response allows early prediction of favorable treatment outcome. Blood 1998;92:2730–41.
  • Dombret H, Gabert J, Boiron J-M, Rigal-Huguet F, Blaise D, Thomas X, et al. Outcome of treatment in adults with Philadelphia chromosome-positive acute lymphoblastic leu-kemia - results of the prospective multicenter LALA-94 trial. Blood 2002;100: 2357–66.
  • Gibbons B, Katz FE, Ganly P, Chessells JM. Infant acute lymphoblastic leukaemia with t(11;19). Br J Haematol 1990; 74:264–9.
  • Huret JL, Brizard A, Slater R, Charrin C, Bertheas MF, Guilhot F, et al. Cytogenetic heterogeneity in t(11;19) acute leukemia: clinical, hematological and cytogenetic analyses of 48 patients - updated published cases and 16 new observa-tions. Leukemia 1993;7:152–60.
  • Moorman AV, Hagemeijer A, Charrin C, Rieder H, Secker-Walker LM. The translocations, t(11;19)(q23;p13.1) and t(11;19)(q23;p13.3): a cytogenetic and clinical profile of 53 patients. Leukemia 1998;12: 805–10.
  • Rubnitz JE, Camitta BM, Mahmoud H, Raimondi SC, Carroll A J, Borowitz MJ, et al. Childhood acute lympho-blastic leukemia with the MLL-ENL fusion and t(11;19)(q23;p13.3) translocation. J Clin Oncol 1999; 17: 191–6.
  • Shurtleff SA, Buijs A, Behm FG, Rubnitz JE, Raimondi SC, Hancock ML, et al. TEL/AML1 fusion resulting from a cryptic t(12;21) is the most common genetic lesion in pediatric ALL and defines a subgroup of patients with an excellent prognosis. Leukemia 1995;9:1985–9.
  • McLean TW, RingoId S, Neuberg D, Stegmaier K, Tantra-vahi R, Ritz J, et al. TEL/AML-1 dimerizes and is associated with a favorable outcome in childhood acute lymphoblastic leukemia. Blood 1996;11: 4252–8.
  • Harbott J, Viehmann S, Borkhardt A, Henze G, Lampert F. Incidence of TEL/AML1 fusion gene analyzed consecutively in children with acute lymphoblastic leukemia in relapse. Blood 1997;90: 4933–7.
  • Borowitz MJ, Rubnitz J, Nash M, Pullen DJ, Camitta B. Surface antigen phenotype can predict TEL-AML1 re-arrangement in childhood B-precursor ALL: a Pediatric Oncology Group study. Leukemia 1998;12: 1764–70.
  • Maloney KW, McGavran L, Murphy JR, Odom LF, Stork L, Wei Q, et al. TEL-AML1 fusion identifies a subset of children with standard risk acute lymphoblastic leukemia who have an excellent prognosis when treated with therapy that includes a single delayed intensification. Leukemia 1999;13: 1708–12.
  • Rubnitz JE, Behm FG, Wichlan D, Ryan C, Sandlund JT, Ribeiro RC, et al. Low frequency of TEL-AML1 in relapsed acute lymphoblastic leukemia supports a favorable prognosis for this genetic subgroup. Leukemia 1999;13:19–21.
  • Uckun FM, Pallisgaard N, Hokland P, Navara C, Narla R, Gaynon PS, et al. Expression of TEL-AML1 fusion tran-scripts and response to induction therapy in standard risk acute lymphoblastic leukemia. Leuk Lymphoma 2001;42:41–56.
  • Robinson HM, Broadfield ZJ, Cheung KL, Harewood L, Harris RL, Jalali GR, et al. Amplification of AML1 in acute lymphoblastic leukemia is associated with a poor outcome. Leukemia 2003;17:2249–50.
  • Soulier J, Trakhtenbrot L, Najfeld V, Lipton JM, Mathew S, Avet-Loiseau H, et al. Amplification of band q22 of chromosome 21, including AML1, in older children with acute lymphoblastic leukemia: an emerging molecular cyto-genetic subgroup. Leukemia 2003;17: 1679–82.
  • Bash RO, Crist WM, Shuster JJ, Link MP, AmyIon M, Pullen J, et al. Clinical features and outcome of T-cell acute lymphoblastic leukemia in childhood with respect to altera-tions at the TAL1 locus: a Pediatric Oncology Group study. Blood 1993;81:2110–7.
  • Kikuchi A, Hayashi Y, Kobayashi S, Hanada R, Moriwaki K, Yamamoto K, et al. Clinical significance of TAL1 gene alteration in childhood T-cell acute lymphoblastic leukemia and lymphoma. Leukemia 1993;7:933–8.
  • Cave H, Suciu S, Preudhomme C, Poppe B, Robert A, Uyttebroeck A, et al. Clinical significance of HOX11L2 expression linked to t(5;14)(q35;q32), of HOX11 expression, and of SIL-TAL fusion in childhood T-cell malignancies: results of EORTC studies 58881 and 58951. Blood 2004;103: 442–50.
  • Mauvieux L, Leymarie V, Helias C, Perrusson N, Falkenrodt A, Lioure B, et al. High incidence of Hox11L2 expression in children with T-ALL. Leukemia 2002;16:2417–22.
  • Lange BJ, Raimondi SC, Heerema N, Nowell PC, Minowada J, Steinherz PE, et al. Pediatric leukemia/lymphoma with t(8;14)(q24;q11). Leukemia 1992;6:613–8.
  • Schneider NR, Carroll A J, Shuster JJ, Pullen DJ, Link MP, Borowitz MJ, et al. New recurring cytogenetic abnormalities and association of blast cell karyotypes with prognosis in childhood T-cell acute lymphoblastic leukemia: a Pediatric Oncology Group report of 343 cases. Blood 2000;96:2543–9.
  • Ribeiro RC, Raimondi SC, Behm FG, Cherrie J, Crist WM, Pui C-H. Clinical and biologic features of childhood T-cell leukemia with the t(11;14). Blood 1991;78: 466–70.
  • Heerema NA, Sather HN, Sensel MG, Kraft P, Nachman JB, Steinherz PG, et al. Frequency and clinical significance of cytogenetic abnormalities in pediatric T-lineage acute lym-phoblastic leukemia: a report from the Children's Cancer Group. J Clin Oncol 1998;16:1270–8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.