589
Views
46
CrossRef citations to date
0
Altmetric
Review Article

Small heat shock proteins in inherited peripheral neuropathies

, , &
Pages 413-422 | Published online: 08 Jul 2009

References

  • Gusev N. B., Bogatcheva N. V., Marston S. B. Structure and properties of small heat shock proteins (sHsp) and their interaction with cytoskeleton proteins. Biochemistry (Mosc) 2002; 67: 511–9
  • Mounier N., Arrigo A. P. Actin cytoskeleton and small heat shock proteins: how do they interact?. Cell Stress Chaperones 2002; 7: 167–76
  • Arrigo A. P. In search of the molecular mechanism by which small stress proteins counteract apoptosis during cellular differentiation. J Cell Biochem 2005; 94: 241–6
  • Mehlen P., Mehlen A., Godet J., Arrigo A. P. hsp27 as a switch between differentiation and apoptosis in murine embryonic stem cells. J Biol Chem 1997; 272: 31657–65
  • Parcellier A., Gurbuxani S., Schmitt E., Solary E., Garrido C. Heat shock proteins, cellular chaperones that modulate mitochondrial cell death pathways. Biochem Biophys Res Commun 2003; 304: 505–12
  • Wain H. M., Bruford E. A., Lovering R. C., Lush M. J., Wright M. W., Povey S. Guidelines for human gene nomenclature. Genomics 2002; 79: 464–70
  • Kappe G., Franck E., Verschuure P., Boelens W. C., Leunissen J. A., De Jong W. W. The human genome encodes 10 alpha‐crystallin‐related small heat shock proteins: HspB1‐10. Cell Stress Chaperones 2003; 8: 53–61
  • Franck E., Madsen O., van Rheede T., Ricard G., Huynen M. A., De Jong W. W. Evolutionary diversity of vertebrate small heat shock proteins. J Mol Evol 2004; 59: 792–805
  • Mörner C. T. Untersuchung der proteinsubstanzen in den leichtbrechenden medien des auges. Hoppe Seylers Z Physiol Chem 1894; 18: 61–106
  • Ingolia T. D., Craig E. A. Four small Drosophila heat shock proteins are related to each other and to mammalian alpha‐crystallin. Proc Natl Acad Sci U S A 1982; 79: 2360–4
  • Dubin R. A., Wawrousek E. F., Piatigorsky J. Expression of the murine alpha B‐crystallin gene is not restricted to the lens. Mol Cell Biol 1989; 9: 1083–91
  • Hickey E., Brandon S. E., Potter R., Stein G., Stein J., Weber L. A. Sequence and organization of genes encoding the human 27 kDa heat shock protein. Nucleic Acids Res 1986; 14: 4127–45
  • Charpentier A. H., Bednarek A. K., Daniel R. L., Hawkins K. A., Laflin K. J., Gaddis S. Effects of estrogen on global gene expression: identification of novel targets of estrogen action. Cancer Res 2000; 60: 5977–83
  • Smith C. C., Yu Y. X., Kulka M., Aurelian L. A novel human gene similar to the protein kinase (PK) coding domain of the large subunit of herpes simplex virus type 2 ribonucleotide reductase (ICP10) codes for a serine‐threonine PK and is expressed in melanoma cells. J Biol Chem 2000; 275: 25690–9
  • Benndorf R., Sun X. K., Gilmont R. R., Biedermann K. J., Molloy M. P., Goodmurphy C. W. HSP22, a new member of the small heat shock protein superfamily, interacts with mimic of phosphorylated HSP27 ((3D)HSP27). J Biol Chem 2001; 276: 26753–61
  • Kappe G., Verschuure P., Philipsen R. L., Staalduinen A. A., Van de B. P., Boelens W. C. Characterization of two novel human small heat shock proteins: protein kinase‐related HspB8 and testis‐specific HspB9. Biochim Biophys Acta 2001; 1520: 1–6
  • Shimura H., Miura‐Shimura Y., Kosik K. S. Binding of tau to heat shock protein 27 leads to decreased concentration of hyperphosphorylated tau and enhanced cell survival. J Biol Chem 2004; 279: 17957–62
  • Renkawek K., Stege G. J., Bosman G. J. Dementia, gliosis and expression of the small heat shock proteins hsp27 and alpha B‐crystallin in Parkinson's disease. Neuroreport 1999; 10: 2273–6
  • Head M. W., Corbin E., Goldman J. E. Overexpression and abnormal modification of the stress proteins alpha B‐crystallin and HSP27 in Alexander disease. Am J Pathol 1993; 143: 1743–53
  • Vleminckx V., Van Damme P., Goffin K., Delye H., Van Den B. L., Robberecht W. Upregulation of HSP27 in a transgenic model of ALS. J Neuropathol Exp Neurol 2002; 61: 968–74
  • Litt M., Kramer P., LaMorticella D. M., Murphey W., Lovrien E. W., Weleber R. G. Autosomal dominant congenital cataract associated with a missense mutation in the human alpha crystallin gene CRYAA. Hum Mol Genet 1998; 7: 471–4
  • Vicart P., Caron A., Guicheney P., Li Z., Prevost M. C., Faure A. A missense mutation in the alphaB‐crystallin chaperone gene causes a desmin‐related myopathy. Nat Genet 1998; 20: 92–5
  • Irobi J., Van Impe K., Seeman P., Jordanova A., Dierick I., Verpoorten N. Hot‐spot residue in small heat‐shock protein 22 causes distal motor neuropathy. Nat Genet 2004; 36: 597–601
  • Evgrafov O. V., Mersiyanova I. V., Irobi J., Van den Bosch L., Dierick I., Schagina O. Mutant small heat‐shock protein 27 causes axonal Charcot‐Marie‐Tooth disease and distal hereditary motor neuropathy. Nat Genet 2004; 36: 602–6
  • Tang B. S., Zhao G. H., Luo W., Xia K., Cai F., Pan Q. Small heat‐shock protein 22 mutated in autosomal dominant Charcot‐Marie‐Tooth disease type 2L. Hum Genet 2005; 116: 222–4
  • Emery A. E. H. Review: The nosology of the spinal muscular atrophies. J Med Genet 1971; 8: 481–95
  • Harding A. E., Thomas P. K. The clinical features of hereditary motor and sensory neuropathy types I and II. Brain 1980; 103: 259–80
  • Irobi J., De Jonghe P., Timmerman V. Molecular genetics of distal hereditary motor neuropathies. Hum Mol Genet 2004; 13: 195–202
  • Shy M. E. Charcot‐Marie‐Tooth disease: an update. Curr Opin Neurol 2004; 17: 579–85
  • Tang B. S., Luo W., Xia K., Xiao J. F., Jiang H., Shen L. A new locus for autosomal dominant Charcot‐Marie‐Tooth disease type 2 (CMT2L) maps to chromosome 12q24. Hum Genet 2004; 114: 527–33
  • Bera S., Thampi P., Cho W. J., Abraham E. C. A positive charge preservation at position 116 of alpha A‐crystallin is critical for its structural and functional integrity. Biochemistry 2002; 41: 12421–6
  • Andley U. P., Patel H. C., Xi J. H. The R116C mutation in alpha A‐crystallin diminishes its protective ability against stress‐induced lens epithelial cell apoptosis. J Biol Chem 2002; 277: 10178–86
  • Fu L., Liang J. J. Alteration of protein‐protein interactions of congenital cataract crystallin mutants. Invest Ophthalmol Vis Sci 2003; 44: 1155–9
  • Zobel A. T. C., Loranger A., Marceau N., Theriault J. R., Lambert H., Landry J. Distinct chaperone mechanisms can delay the formation of aggresomes by the myopathy‐causing R120G alpha B‐crystallin mutant. Hum Mol Genet 2003; 12: 1609–20
  • Muchowski P. J., Wu G. J., Liang J. J., Adman E. T., Clark J. I. Site‐directed mutations within the core "alpha‐crystallin" domain of the small heat‐shock protein, human alphaB‐crystallin, decrease molecular chaperone functions. J Mol Biol 1999; 289: 397–411
  • Pasta S. Y., Raman B., Ramakrishna T., Rao C. The IXI/V motif in the C‐terminal extension of alpha‐crystallins: alternative interactions and oligomeric assemblies. Mol Vis 2004; 10: 655–62
  • Studer S., Obrist M., Lentze N., Narberhaus F. A critical motif for oligomerization and chaperone activity of bacterial alpha‐heat shock proteins. Eur J Biochem 2002; 269: 3578–86
  • Pasta S. Y., Raman B., Ramakrishna T., Rao C. Role of the conserved SRLFDQFFG region of alpha‐crystallin, a small heat shock protein. Effect on oligomeric size, subunit exchange, and chaperone‐like activity. J Biol Chem 2003; 278: 51159–66
  • Diaz‐Latoud C., Buache E., Javouhey E., Arrigo A. P. Substitution of the unique cysteine residue of murine hsp25 interferes with the protective activity of this stress protein through inhibition of dimer formation. Antioxid Redox Signal 2005; 7: 436–45
  • Chowdary T. K., Raman B., Ramakrishna T., Rao C. M. Mammalian Hsp22 is a heat‐inducible small heat‐shock protein with chaperone‐like activity. Biochem J 2004; 381: 379–87
  • Kim M. V., Seit‐Nebi A. S., Marston S. B., Gusev N. B. Some properties of human small heat shock protein Hsp22 (H11 or HspB8). Biochem Biophys Res Commun 2004; 315: 796–801
  • Sun X., Fontaine J. M., Rest J. S., Shelden E. A., Welsh M. J., Benndorf R. Interaction of human HSP22 (HSPB8) with other small heat shock proteins. J Biol Chem 2004; 279: 2394–402
  • Giese K. C., Vierling E. Changes in oligomerization are essential for the chaperone activity of a small heat shock protein in vivo and in vitro. J Biol Chem 2002; 277: 46310–8
  • Rogalla T., Ehrnsperger M., Preville X., Kotlyarov A., Lutsch G., Ducasse C. Regulation of Hsp27 oligomerization, chaperone function, and protective activity against oxidative stress/tumor necrosis factor alpha by phosphorylation. J Biol Chem 1999; 274: 18947–56
  • Haslbeck M., Buchner J. Chaperone function of sHsps. Prog Mol Subcell Biol 2002; 28: 37–59
  • Jakob U., Gaestel M., Engel K., Buchner J. Small heat shock proteins are molecular chaperones. J Biol Chem 1993; 268: 1517–20
  • Theriault J. R., Lambert H., Chavez‐Zobel A. T., Charest G., Lavigne P., Landry J. Essential role of the NH2‐terminal WD/EPF motif in the phosphorylation‐activated protective function of mammalian Hsp27. J Biol Chem 2004; 279: 23463–71
  • Lindner R. A., Carver J. A., Ehrnsperger M., Buchner J., Esposito G., Behlke J. Mouse Hsp25, a small shock protein. The role of its C‐terminal extension in oligomerization and chaperone action. Eur J Biochem 2000; 267: 1923–32
  • Wyttenbach A., Sauvageot O., Carmichael J., Diaz‐Latoud C., Arrigo A. P., Rubinsztein D. C. Heat shock protein 27 prevents cellular polyglutamine toxicity and suppresses the increase of reactive oxygen species caused by huntingtin. Hum Mol Genet 2002; 11: 1137–51
  • Bruey J. M., Ducasse C., Bonniaud P., Ravagnan L., Susin S. A., Diaz‐Latoud C. Hsp27 negatively regulates cell death by interacting with cytochrome c. Nat Cell Biol 2000; 2: 645–52
  • Pandey P., Farber R., Nakazawa A., Kumar S., Bharti A., Nalin C. Hsp27 functions as a negative regulator of cytochrome c‐dependent activation of procaspase‐3. Oncogene 2000; 19: 1975–81
  • Charette S. J., Lavoie J. N., Lambert H., Landry J. Inhibition of Daxx‐mediated apoptosis by heat shock protein 27. Mol Cell Biol 2000; 20: 7602–12
  • Parcellier A., Schmitt E., Gurbuxani S., Seigneurin‐Berny D., Pance A., Chantome A. HSP27 is a ubiquitin‐binding protein involved in I‐kappaBalpha proteasomal degradation. Mol Cell Biol 2003; 23: 5790–802
  • Gober M. D., Smith C. C., Ueda K., Toretsky J. A., Aurelian L. Forced expression of the h11 heat shock protein can be regulated by DNA methylation and trigger apoptosis in human cells. J Biol Chem 2003; 278: 37600–9
  • Hase M., Depre C., Vatner S. F., Sadoshima J. H11 has dose‐dependent and dual hypertrophic and proapoptotic functions in cardiac myocytes. Biochem J 2005; 388: 475–83
  • Murashov A. K., Ul H., I., Hill C., Park E., Smith M., Wang X. Crosstalk between p38, Hsp25 and Akt in spinal motor neurons after sciatic nerve injury. Brain Res Mol Brain Res 2001; 93: 199–208
  • Depre C., Hase M., Gaussin V., Zajac A., Wang L., Hittinger L. H11 kinase is a novel mediator of myocardial hypertrophy in vivo. Circ Res 2002; 91: 1007–14
  • Benndorf R., Hayess K., Ryazantsev S., Wieske M., Behlke J., Lutsch G. Phosphorylation and supramolecular organization of murine small heat shock protein HSP25 abolish its actin polymerization‐inhibiting activity. J Biol Chem 1994; 269: 20780–4
  • Guay J., Lambert H., Gingras‐Breton G., Lavoie J. N., Huot J., Landry J. Regulation of actin filament dynamics by p38 map kinase‐mediated phosphorylation of heat shock protein 27. J Cell Sci 1997; 110(Pt 3): 357–68
  • Wieske M., Benndorf R., Behlke J., Dolling R., Grelle G., Bielka H. Defined sequence segments of the small heat shock proteins HSP25 and alphaB‐crystallin inhibit actin polymerization. Eur J Biochem 2001; 268: 2083–90
  • Perng M. D., Cairns L., van den IJssel P., Prescott A., Hutcheson A. M., Quinlan R. A. Intermediate filament interactions can be altered by HSP27 and alpha B‐crystallin. J Cell Sci 1999; 112: 2099–112
  • Mersiyanova I. V., Perepelov A. V., Polyakov A. V., Sitnikov V. F., Dadali E. L., Oparin R. B. A new variant of Charcot‐Marie‐Tooth disease type 2 (CMT2E) is probably the result of a mutation in the neurofilament light gene. Am J Hum Genet 2000; 67: 37–46
  • Gros‐Louis F., Lariviere R., Gowing G., Laurent S., Camu W., Bouchard J. P. A frameshift deletion in peripherin gene associated with amyotrophic lateral sclerosis. J Biol Chem 2004; 279: 45951–6
  • Züchner S., Noureddine M., Kennerson M., Verhoeven K., Claeys K., De Jonghe P. Mutations in the pleckstrin homology domain of dynamin 2 cause dominant intermediate Charcot‐Marie‐Tooth disease. Nat Genet 2005; 37: 289–94
  • Puls I., Jonnakuty C., LaMonte B. H., Holzbaur E. L., Tokito M., Mann E. Mutant dynactin in motor neuron disease. Nat Genet 2003; 33: 455–6
  • Costigan M., Mannion R. J., Kendall G., Lewis S. E., Campagna J. A., Coggeshall R. E. Heat shock protein 27: developmental regulation and expression after peripheral nerve injury. J Neurosci 1998; 18: 5891–900
  • Hirata K., He J., Hirakawa Y., Liu W., Wang S., Kawabuchi M. HSP27 is markedly induced in Schwann cell columns and associated regenerating axons. Glia 2003; 42: 1–11
  • Lewis S. E., Mannion R. J., White F. A., Coggeshall R. E., Beggs S., Costigan M. A role for HSP27 in sensory neuron survival. J Neurosci 1999; 19: 8945–53
  • Benn S. C., Perrelet D., Kato A. C., Scholz J., Decosterd I., Mannion R. J. Hsp27 upregulation and phosphorylation is required for injured sensory and motor neuron survival. Neuron 2002; 36: 45–56
  • Wagstaff M. J., Collaco‐Moraes Y., Smith J., de Belleroche J. S., Coffin R. S., Latchman D. S. Protection of neuronal cells from apoptosis by Hsp27 delivered with a herpes simplex virus‐based vector. J Biol Chem 1999; 274: 5061–9
  • Fragoso G., Robertson J., Athlan E., Tam E., Almazan G., Mushynski W. E. Inhibition of p38 mitogen‐activated protein kinase interferes with cell shape changes and gene expression associated with Schwann cell myelination. Exp Neurol 2003; 183: 34–46
  • Krueger‐Naug A. M., Emsley J. G., Myers T. L., Currie R. W., Clarke D. B. Injury to retinal ganglion cells induces expression of the small heat shock protein Hsp27 in the rat visual system. Neuroscience 2002; 110: 653–65
  • Valentim L. M., Geyer A. B., Tavares A., Cimarosti H., Worm P. V., Rodnight R. Effects of global cerebral ischemia and preconditioning on heat shock protein 27 immunocontent and phosphorylation in rat hippocampus. Neuroscience 2001; 107: 43–9
  • Kalwy S. A., Akbar M. T., Coffin R. S., de Belleroche J., Latchman D. S. Heat shock protein 27 delivered via a herpes simplex virus vector can protect neurons of the hippocampus against kainic‐acid‐induced cell loss. Brain Res Mol Brain Res 2003; 111: 91–103
  • Zourlidou A., Payne S., Latchman D. S. HSP27 but not HSP70 has a potent protective effect against alpha‐synuclein‐induced cell death in mammalian neuronal cells. J Neurochem 2004; 88: 1439–48
  • Akbar T. M., Lundberg A. M., Liu K., Vidyadaran S., Wells K. E., Dolatshad H. The neuroprotective effects of heat shock protein 27 overexpression in transgenic animals against kainate‐induced seizures and hippocampal cell death. J Biol Chem 2003; 278: 19956–65
  • Pieri I., Cifuentes‐Diaz C., Oudinet J. P., Blondet B., Rieger F., Gonin S. Modulation of HSP25 expression during anterior horn motor neuron degeneration in the paralyse mouse mutant. J Neurosci Res 2001; 65: 247–53
  • Wen F. C., Li Y. H., Tsai H. F., Lin C. H., Li C., Liu C. S. Down‐regulation of heat shock protein 27 in neuronal cells and non‐neuronal cells expressing mutant ataxin‐3. FEBS Lett 2003; 546: 307–14
  • Maatkamp A., Vlug A., Haasdijk E., Troost D., French P. J., Jaarsma D. Decrease of Hsp25 protein expression precedes degeneration of motoneurons in ALS‐SOD1 mice. Eur J Neurosci 2004; 20: 14–28
  • Batulan Z., Shinder G. A., Minotti S., He B. P., Doroudchi M. M., Nalbantoglu J. High threshold for induction of the stress response in motor neurons is associated with failure to activate HSF1. J Neurosci 2003; 23: 5789–98
  • Gorman A. M., Szegezdi E., Quigney D. J., Samali A. Hsp27 inhibits 6‐hydroxydopamine‐induced cytochrome c release and apoptosis in PC12 cells. Biochem Biophys Res Commun 2005; 327: 801–10
  • Kieran D., Kalmar B., Dick J. R., Riddoch‐Contreras J., Burnstock G., Greensmith L. Treatment with arimoclomol, a coinducer of heat shock proteins, delays disease progression in ALS mice. Nat Med 2004; 10: 402–5
  • Sittler A., Lurz R., Lueder G., Priller J., Lehrach H., Hayer‐Hartl M. K. Geldanamycin activates a heat shock response and inhibits huntingtin aggregation in a cell culture model of Huntington's disease. Hum Mol Genet 2001; 10: 1307–15
  • Gold B. G., Voda J., Yu X., Gordon H. The immunosuppressant FK506 elicits a neuronal heat shock response and protects against acrylamide neuropathy. Exp Neurol 2004; 187: 160–70
  • Klettner A. The induction of heat shock proteins as a potential strategy to treat neurodegenerative disorders. Drug News Perspect 2004; 17: 299–306

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.