751
Views
29
CrossRef citations to date
0
Altmetric
REVIEW ARTICLE

Genetics, genomics and proteomics in atherosclerosis research

, &
Pages 323-332 | Published online: 08 Jul 2009

References

  • Ross R. Atherosclerosis is an inflammatory disease. Am Heart J 1999; 138: S419–20
  • Lusis A. J., Fogelman A. M., Fonarow G. C. Genetic basis of atherosclerosis: part I: new genes and pathways. Circulation 2004; 110: 1868–73
  • Lusis A. J., Mar R., Pajukanta P. Genetics of atherosclerosis. Annu Rev Genomics Hum Genet 2004; 5: 189–218
  • Humphries S. E., Talmud P. J., Hawe E., Bolla M., Day I. N., Miller G. J. Apolipoprotein E4 and coronary heart disease in middle‐aged men who smoke: a prospective study. Lancet 2001; 358: 115–9
  • Chiodini B. D., Lewis C. M. Meta‐analysis of 4 coronary heart disease genome‐wide linkage studies confirms a susceptibility locus on chromosome 3q. Arterioscler Thromb Vasc Biol 2003; 23: 1863–8
  • Suh Y., Vijg J. SNP discovery in associating genetic variation with human disease phenotypes. Mutat Res 2005; 573: 41–53
  • Ozaki K., Ohnishi Y., Iida A., Sekine A., Yamada R., Tsunoda T., et al. Functional SNPs in the lymphotoxin‐alpha gene that are associated with susceptibility to myocardial infarction. Nat Genet 2002; 32: 650–4
  • Stevenson M. Dissecting HIV‐1 through RNA interference. Nat Rev Immunol 2003; 3: 851–8
  • Egger G., Liang G., Aparicio A., Jones P. A. Epigenetics in human disease and prospects for epigenetic therapy. Nature 2004; 429: 457–63
  • Hiltunen M. O., Yla‐Herttuala S. DNA methylation, smooth muscle cells, and atherogenesis. Arterioscler Thromb Vasc Biol 2003; 23: 1750–3
  • Shi H., Maier S., Nimmrich I., Yan P. S., Caldwell C. W., Olek A., et al. Oligonucleotide‐based microarray for DNA methylation analysis: principles and applications. J Cell Biochem 2003; 88: 138–43
  • Austin M. A., Hutter C. M., Zimmern R. L., Humphries S. E. Genetic causes of monogenic heterozygous familial hypercholesterolemia: a HuGE prevalence review. Am J Epidemiol 2004; 160: 407–20
  • Marks D., Wonderling D., Thorogood M., Lambert H., Humphries S. E., Neil H. A. Cost effectiveness analysis of different approaches of screening for familial hypercholesterolaemia. BMJ 2002; 324: 1303
  • Puddu D., Cravero E., Puddu G., Muscari A. Genes and atherosclerosis: at the origin of the predisposition. Int J Clin Pract 2005; 59: 462–72
  • Franco R. F., Reitsma P. H. Gene polymorphisms of the haemostatic system and the risk of arterial thrombotic disease. Br J Haematol 2001; 115: 491–506
  • Juhan‐Vague I., Morange P. E., Frere C., Aillaud M. F., Alessi M. C., Hawe E., et al. The plasminogen activator inhibitor‐1 ‐675 4G/5G genotype influences the risk of myocardial infarction associated with elevated plasma proinsulin and insulin concentrations in men from Europe: the HIFMECH study. J Thromb Haemost 2003; 1: 2322–9
  • Lijnen H. R. Pleiotropic functions of plasminogen activator inhibitor‐1. J Thromb Haemost 2005; 3: 35–45
  • Binder B. R., Christ G., Gruber F., Grubic N., Hufnagl P., Krebs M., et al. Plasminogen activator inhibitor 1: physiological and pathophysiological roles. News Physiol Sci 2002; 17: 56–61
  • Ordovas J. M., Mooser V. The APOE locus and the pharmacogenetics of lipid response. Curr Opin Lipidol 2002; 13: 113–7
  • Kuivenhoven J. A., Jukema J. W., Zwinderman A. H., de Knijff P., McPherson R., Bruschke A. V., et al. The role of a common variant of the cholesteryl ester transfer protein gene in the progression of coronary atherosclerosis. The Regression Growth Evaluation Statin Study Group. N Engl J Med 1998; 338: 86–93
  • Lockhart D. J., Winzeler E. A. Genomics, gene expression and DNA arrays. Nature 2000; 405: 827–36
  • McCaffrey T. A. TGF‐betas and TGF‐beta receptors in atherosclerosis. Cytokine Growth Factor Rev 2000; 11: 103–14
  • Hiltunen M. O., Tuomisto T. T., Niemi M., Brasen J. H., Rissanen T. T., Toronen P., et al. Changes in gene expression in atherosclerotic plaques analyzed using DNA array. Atherosclerosis 2002; 165: 23–32
  • Tuomisto T. T., Korkeela A., Rutanen J., Viita H., Brasen J. H., Riekkinen M. S., et al. Gene expression in macrophage‐rich inflammatory cell infiltrates in human atherosclerotic lesions as studied by laser microdissection and DNA array: overexpression of HMG‐CoA reductase, colony stimulating factor receptors, CD11A/CD18 integrins, and interleukin receptors. Arterioscler Thromb Vasc Biol 2003; 23: 2235–40
  • Napoli C., de Nigris F., Welch J. S., Calara F. B., Stuart R. O., Glass C. K., et al. Maternal hypercholesterolemia during pregnancy promotes early atherogenesis in LDL receptor‐deficient mice and alters aortic gene expression determined by microarray. Circulation 2002; 105: 1360–7
  • Wesselman J. P., Kuijs R., Hermans J. J., Janssen G. M., Fazzi G. E., van Essen H., et al. Role of the Rhoa/Rho kinase system in flow‐related remodeling of rat mesenteric small arteries in vivo. J Vasc Res 2004; 41: 277–90
  • Dupuis M., Soubrier F., Brocheriou I., Raoux S., Haloui M., Louedec L., et al. Profiling of aortic smooth muscle cell gene expression in response to chronic inhibition of nitric oxide synthase in rats. Circulation 2004; 110: 867–73
  • Smirnova I. V., Sawamura T., Goligorsky M. S. Upregulation of lectin‐like oxidized low‐density lipoprotein receptor‐1 (LOX‐1) in endothelial cells by nitric oxide deficiency. Am J Physiol Renal Physiol 2004; 287: F25–32
  • Csiszar A., Ungvari Z., Koller A., Edwards J. G., Kaley G. Aging‐induced proinflammatory shift in cytokine expression profile in coronary arteries. FASEB J 2003; 17: 1183–5
  • Csiszar A., Ungvari Z., Koller A., Edwards J. G., Kaley G. Proinflammatory phenotype of coronary arteries promotes endothelial apoptosis in aging. Physiol Genomics 2004; 17: 21–30
  • Burnett M. S., Durrani S., Stabile E., Saji M., Lee C. W., Kinnaird T. D., et al. Murine cytomegalovirus infection increases aortic expression of proatherosclerotic genes. Circulation 2004; 109: 893–7
  • Takahashi K., Mizuarai S., Araki H., Mashiko S., Ishihara A., Kanatani A., et al. Adiposity elevates plasma MCP‐1 levels leading to the increased CD11b‐positive monocytes in mice. J Biol Chem 2003; 278: 46654–60
  • Blaschke F., Bruemmer D., Yin F., Takata Y., Wang W., Fishbein M. C., et al. C‐reactive protein induces apoptosis in human coronary vascular smooth muscle cells. Circulation 2004; 110: 579–87
  • Wang Q., Zhu X., Xu Q., Ding X., Chen Y. E., Song Q. Effect of C‐Reactive Protein on Gene Expression in Vascular Endothelial Cells. Am J Physiol Heart Circ Physiol 2005; 288: H1539–45
  • Nakahashi T. K., Hoshina K., Tsao P. S., Sho E., Sho M., Karwowski J. K., et al. Flow loading induces macrophage antioxidative gene expression in experimental aneurysms. Arterioscler Thromb Vasc Biol 2002; 22: 2017–22
  • Kalish J. A., Willis D. J., Li C., Link J. J., Deutsch E. R., Contreras M. A., et al. Temporal genomics of vein bypass grafting through oligonucleotide microarray analysis. J Vasc Surg 2004; 39: 645–54
  • Willis D. J., Kalish J. A., Li C., Deutsch E. R., Contreras M. A., LoGerfo F. W., et al. Temporal gene expression following prosthetic arterial grafting. J Surg Res 2004; 120: 27–36
  • Llaverias G., Noe V., Penuelas S., Vazquez‐Carrera M., Sanchez R. M., Laguna J. C., et al. Atorvastatin reduces CD68, FABP4, and HBP expression in oxLDL‐treated human macrophages. Biochem Biophys Res Commun 2004; 318: 265–74
  • Morikawa S., Takabe W., Mataki C., Wada Y., Izumi A., Saito Y., et al. Global analysis of RNA expression profile in human vascular cells treated with statins. J Atheroscler Thromb 2004; 11: 62–72
  • Furnkranz A., Schober A., Bochkov V. N., Bashtrykov P., Kronke G., Kadl A., et al. Oxidized phospholipids trigger atherogenic inflammation in murine arteries. Arterioscler Thromb Vasc Biol 2005; 25: 633–8
  • Waehre T., Yndestad A., Smith C., Haug T., Tunheim S. H., Gullestad L., et al. Increased expression of interleukin‐1 in coronary artery disease with downregulatory effects of HMG‐CoA reductase inhibitors. Circulation 2004; 109: 1966–72
  • Nguyen K. T., Shaikh N., Shukla K. P., Su S. H., Eberhart R. C., Tang L. Molecular responses of vascular smooth muscle cells and phagocytes to curcumin‐eluting bioresorbable stent materials. Biomaterials 2004; 25: 5333–46
  • Nguyen K. T., Shaikh N., Wawro D., Zhang S., Schwade N. D., Eberhart R. C., et al. Molecular responses of vascular smooth muscle cells to paclitaxel‐eluting bioresorbable stent materials. J Biomed Mater Res 2004; 69A: 513–24
  • Hishikawa K., Nakaki T., Fujita T. Oral Flavonoid Supplementation Attenuates Atherosclerosis Development in Apolipoprotein E‐Deficient Mice. Arterioscler Thromb Vasc Biol 2005; 25: 442–6
  • Tamayo P., Slonim D., Mesirov J., Zhu Q., Kitareewan S., Dmitrovsky E., et al. Interpreting patterns of gene expression with self‐organizing maps: methods and application to hematopoietic differentiation. Proc Natl Acad Sci U S A 1999; 96: 2907–12
  • Shiffman D., Mikita T., Tai J. T., Wade D. P., Porter J. G., Seilhamer J. J., et al. Large scale gene expression analysis of cholesterol‐loaded macrophages. J Biol Chem 2000; 275: 37324–32
  • Tuomisto T. T., Riekkinen M. S., Viita H., Levonen A. L., Yla‐Herttuala S. Analysis of gene and protein expression during monocyte‐macrophage differentiation and cholesterol loading‐cDNA and protein array study. Atherosclerosis 2005; 180: 283–91
  • Mootha V. K., Lindgren C. M., Eriksson K. F., Subramanian A., Sihag S., Lehar J., et al. PGC‐1alpha‐responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet 2003; 34: 267–73
  • Kohro T., Tanaka T., Murakami T., Wada Y., Aburatani H., Hamakubo T., et al. A comparison of differences in the gene expression profiles of phorbol 12‐myristate 13‐acetate differentiated THP‐1 cells and human monocyte‐derived macrophage. J Atheroscler Thromb 2004; 11: 88–97
  • Kerr M. K., Churchill G. A. Experimental design for gene expression microarrays. Biostatistics 2001; 2: 183–201
  • Butte A. The use and analysis of microarray data. Nat Rev Drug Discov 2002; 1: 951–60
  • Li J., Pankratz M., Johnson J. A. Differential gene expression patterns revealed by oligonucleotide versus long cDNA arrays. Toxicol Sci 2002; 69: 383–90
  • Zubay G. L., Parson W. W., Vance D. E. Regulation of Gene Expression in Eukaryotes. Principles of Biochemistry, G. L Zubay, W. W Parson, D. E Vance. Wm. C. Brown, DubuqueU S A 1995; 800–29
  • Gygi S. P., Rochon Y., Franza B. R., Aebersold R. Correlation between protein and mRNA abundance in yeast. Mol Cell Biol 1999; 19: 1720–30
  • Greenbaum D., Jansen R., Gerstein M. Analysis of mRNA expression and protein abundance data: an approach for the comparison of the enrichment of features in the cellular population of proteins and transcripts. Bioinformatics 2002; 18: 585–96
  • Mayer H., Bilban M., Kurtev V., Gruber F., Wagner O., Binder B. R., et al. Deciphering regulatory patterns of inflammatory gene expression from interleukin‐1‐stimulated human endothelial cells. Arterioscler Thromb Vasc Biol 2004; 24: 1192–8
  • Stoeckert C. J, Jr., Causton H. C., Ball C. A. Microarray databases: standards and ontologies. Nat Genet 2002; 32 Suppl: 469–73
  • Zhu H., Snyder M. Protein chip technology. Curr Opin Chem Biol 2003; 7: 55–63
  • Huang L., Zhao A., Wong F., Ayala J. M., Struthers M., Ujjainwalla F., et al. Leukotriene B4 strongly increases monocyte chemoattractant protein‐1 in human monocytes. Arterioscler Thromb Vasc Biol 2004; 24: 1783–8
  • Martinet W., Schrijvers D. M., De Meyer G. R., Herman A. G., Kockx M. M. Western array analysis of human atherosclerotic plaques: downregulation of apoptosis‐linked gene 2. Cardiovasc Res 2003; 60: 259–67
  • Kallioniemi O. P., Wagner U., Kononen J., Sauter G. Tissue microarray technology for high‐throughput molecular profiling of cancer. Hum Mol Genet 2001; 10: 657–62
  • Koullias G. J., Ravichandran P., Korkolis D. P., Rimm D. L., Elefteriades J. A. Increased tissue microarray matrix metalloproteinase expression favors proteolysis in thoracic aortic aneurysms and dissections. Ann Thorac Surg 2004; 78: 2106–10
  • Fleiner M., Kummer M., Mirlacher M., Sauter G., Cathomas G., Krapf R., et al. Arterial neovascularization and inflammation in vulnerable patients: early and late signs of symptomatic atherosclerosis. Circulation 2004; 110: 2843–50
  • Cheung V. G., Spielman R. S. The genetics of variation in gene expression. Nat.Genet 2002; 32 Suppl: 522–5
  • Ganesh S. K., Skelding K. A., Mehta L., O'Neill K., Joo J., Zheng G., et al. Rationale and study design of the CardioGene Study: genomics of in‐stent restenosis. Pharmacogenomics 2004; 5: 952–1004
  • Martinet W., Schrijvers D. M., De Meyer G. R., Thielemans J., Knaapen M. W., Herman A. G., et al. Gene expression profiling of apoptosis‐related genes in human atherosclerosis: upregulation of death‐associated protein kinase. Arterioscler Thromb Vasc Biol 2002; 22: 2023–9
  • Woodside K. J., Hernandez A., Smith F. W., Xue X. Y., Hu M., Daller J. A., et al. Differential gene expression in primary and recurrent carotid stenosis. Biochem Biophys Res Commun 2003; 302: 509–14
  • Randi A. M., Biguzzi E., Falciani F., Merlini P., Blakemore S., Bramucci E., et al. Identification of differentially expressed genes in coronary atherosclerotic plaques from patients with stable or unstable angina by cDNA array analysis. J Thromb Haemost 2003; 1: 829–35
  • Ungvari Z., Csiszar A., Edwards J. G., Kaminski P. M., Wolin M. S., Kaley G., et al. Increased superoxide production in coronary arteries in hyperhomocysteinemia: role of tumor necrosis factor‐alpha, NAD(P)H oxidase, and inducible nitric oxide synthase. Arterioscler Thromb Vasc Biol 2003; 23: 418–24
  • Andersson T., Borang S., Larsson M., Wirta V., Wennborg A., Lundeberg J., et al. Novel candidate genes for atherosclerosis are identified by representational difference analysis‐based transcript profiling of cholesterol‐loaded macrophages. Pathobiology 2001; 69: 304–14
  • Virgili F., Ambra R., Muratori F., Natella F., Majewicz J., Minihane A. M., et al. Effect of oxidized low‐density lipoprotein on differential gene expression in primary human endothelial cells. Antioxid Redox Signal 2003; 5: 237–47
  • Takabe W., Kanai Y., Chairoungdua A., Shibata N., Toi S., Kobayashi M., et al. Lysophosphatidylcholine enhances cytokine production of endothelial cells via induction of L‐type amino acid transporter 1 and cell surface antigen 4F2. Arterioscler Thromb Vasc Biol 2004; 24: 1640–5
  • Sukhanov S., Hua S. Y., Delafontaine P. Global analysis of differentially expressed genes in oxidized LDL‐treated human aortic smooth muscle cells. Biochem Biophys Res Commun 2003; 306: 443–9
  • Norata G. D., Pirillo A., Callegari E., Hamsten A., Catapano A. L., Eriksson P. Gene expression and intracellular pathways involved in endothelial dysfunction induced by VLDL and oxidised VLDL. Cardiovasc Res 2003; 59: 169–80
  • Haley K. J., Lilly C. M., Yang J. H., Feng Y., Kennedy S. P., Turi T. G., et al. Overexpression of eotaxin and the CCR3 receptor in human atherosclerosis: using genomic technology to identify a potential novel pathway of vascular inflammation. Circulation 2000; 102: 2185–9
  • Jang W. G., Kim H. S., Park K. G., Park Y. B., Yoon K. H., Han S. W., et al. Analysis of proteome and transcriptome of tumor necrosis factor alpha stimulated vascular smooth muscle cells with or without alpha lipoic acid. Proteomics 2004
  • Lee Y. W., Eum S. Y., Chen K. C., Hennig B., Toborek M. Gene expression profile in interleukin‐4‐stimulated human vascular endothelial cells. Mol Med 2004; 10: 19–27
  • Mikita T., Porter G., Lawn R. M., Shiffman D. Oxidized low density lipoprotein exposure alters the transcriptional response of macrophages to inflammatory stimulus. J Biol Chem 2001; 276: 45729–39
  • McCormick S. M., Eskin S. G., McIntire L. V., Teng C. L., Lu C. M., Russell C. G., et al. DNA microarray reveals changes in gene expression of shear stressed human umbilical vein endothelial cells. Proc Natl Acad Sci U S A 2001; 98: 8955–60
  • Ohura N., Yamamoto K., Ichioka S., Sokabe T., Nakatsuka H., Baba A., et al. Global analysis of shear stress‐responsive genes in vascular endothelial cells. J Atheroscler Thromb 2003; 10: 304–13
  • Warabi E., Wada Y., Kajiwara H., Kobayashi M., Koshiba N., Hisada T., et al. Effect on endothelial cell gene expression of shear stress, oxygen concentration, and low‐density lipoprotein as studied by a novel flow cell culture system. Free Radic Biol Med 2004; 37: 682–94

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.