634
Views
13
CrossRef citations to date
0
Altmetric
REVIEW ARTICLE

The GLP‐1 system as a therapeutic target

Pages 314-322 | Published online: 08 Jul 2009

References

  • Moore B., Edie E. S., Abram J. H. On the treatment of diabetes mellitus by the acid extraction of duodenal mucous membranes. Biochem J 1906; 1: 28–38
  • Zunz E., La Barre J. Contributions a l'etude des variations physiologiques de la secretion interne du pancreas: relations entre les secretions externe et interne du pancreas. Arch Int Physiol Biochim Biophys 1929; 31: 20–44
  • Mcintyre N., Holdsworth C. D., Turner D. S. New interpretation of oral glucose tolerance. Lancet 1964; 41: 20–1
  • Perley M. J., Kipnis D. M. Plasma insulin responses to oral and intravenous glucose: studies in normal and diabetic subjects. J Clin Invest 1967; 46: 1954–62
  • Creutzfeldt W. The incretin concept today. Diabetologia 1979; 16: 75–85
  • Bell G. I., Sanchez‐Pescador R., Laybourn P. J., Najarian R. C. Exon duplication and divergence in the human preproglucagon gene. Nature 1983; 304: 368–71
  • Lopez L. C., Li W. H., Frazier M. L., Luo C. C., Saunders G. F. Evolution of glucagon genes. Mol Biol Evol 1984; 1: 335–44
  • Kreymann B., Williams G., Ghatei M. A., Bloom S. R. Glucagon‐like peptide‐1 7‐36: a physiological incretin in man. Lancet 1987; 2: 1300–4
  • Nauck M. A., Heimesaat M. M., Orskov C., Holst J. J., Ebert R., Creutzfeldt W. Preserved incretin activity of glucagon‐like peptide 1 [7‐36 amide] but not of synthetic human gastric inhibitory polypeptide in patients with type‐2 diabetes mellitus. J Clin Invest 1993; 91: 301–7
  • Edwards C. M., Todd J. F., Mahmoudi M., Wang Z., Wang R. M., Ghatei M. A., et al. Glucagon‐like peptide 1 has a physiological role in the control of postprandial glucose in humans: studies with the antagonist exendin 9–39. Diabetes 1999; 48: 86–93
  • Drucker D. J., Philippe J., Mojsov S., Chick W. L., Habener J. F. Glucagon‐like peptide 1 stimulates insulin gene expression and increases cyclic AMP levels in a rat islet cell line. Proc Natl Acad Sci U S A 1987; 84: 3434–8
  • De Leon D. D., Deng S., Madani R., Ahima R. S., Drucker D. J., Stoffers D. A. Role of endogenous glucagon‐like peptide‐1 in islet regeneration following partial pancreatectomy. Diabetes 2003; 52: 365–71
  • Wang Q., Brubaker P. L. Glucagon‐like peptide‐1 treatment delays the onset of diabetes in 8 week‐old db/db mice. Diabetologia 2002; 45: 1263–73
  • Farilla L., Bulotta A., Hirshberg B., Li Calzi S., Khoury N., Noushmehr H., et al. Glucagon‐like peptide 1 inhibits cell apoptosis and improves glucose responsiveness of freshly isolated human islets. Endocrinology 2003; 144: 5149–58
  • UK Prospective Diabetes Study (UKPDS) Group. Glycemic control with diet, sulfonylurea, metformin, or insulin in patients with type 2 diabetes mellitus: progressive requirement for multiple therapies (UKPDS 49). JAMA 1999; 281: 2005–12
  • Gutniak M., Orskov C., Holst J. J., Ahren B., Efendic S. Antidiabetogenic effect of glucagon‐like peptide‐1 (7‐36) amide in normal subjects and patients with diabetes mellitus. N Engl J Med 1992; 326: 1316–22
  • Unger R. H. Role of glucagon in the pathogenesis of diabetes: the status of the controversy. Metabolism 1978; 27: 1691–709
  • Unger R. H., Orci L. The essential role of glucagon in the pathogenesis of diabetes mellitus. Lancet 1975; 7897: 14–6
  • Wettergren A., Schjoldager B., Mortensen P. E., Myhre J., Christiansen J., Holst J. J. Truncated GLP‐1 (proglucagon 78‐107‐amide) inhibits gastric and pancreatic functions in man. Dig Dis Sci 1993; 38: 665–73
  • Nauck M. A., Niedereichholz U., Ettler R., Holst J. J., Orskov C., Ritzel R., et al. Glucagon‐like peptide 1 inhibition of gastric emptying outweighs its insulinotropic effects in healthy humans. Am J Physiol 1997; 273: E981–8
  • Naslund E., Gutniak M., Skogar S., Rossner S., Hellstrom P. M. Glucagon‐like peptide 1 increases the period of postprandial satiety and slows gastric emptying in obese men. Am J Clin Nutr 1998; 68: 525–30
  • Turton M. D., O'Shea D., Gunn I., Beak S. A., Edwards C. M., Meeran K., et al. A role for glucagon‐like peptide‐1 in the central regulation of feeding. Nature 1996; 379: 69–72
  • Meeran K., O'Shea D., Edwards C. M., Turton M. D., Heath M. M., Gunn I., et al. Repeated intracerebroventricular administration of glucagon‐like peptide‐1‐(7‐36) amide or exendin‐(9‐39) alters body weight in the rat. Endocrinology 1999; 140: 244–50
  • Flint A., Raben A., Astrup A., Holst J. J. Glucagon‐like peptide 1 promotes satiety and suppresses energy intake in humans. J Clin Invest 1998; 101: 515–20
  • Gutzwiller J. P., Drewe J., Goke B., Schmidt H., Rohrer B., Lareida J., et al. Glucagon‐like peptide‐1 promotes satiety and reduces food intake in patients with diabetes mellitus type 2. Am J Physiol 1999; 276: R1541–4
  • D'Alessio D. A., Kahn S. E., Leusner C. R., Ensinck J. W. Glucagon‐like peptide 1 enhances glucose tolerance both by stimulation of insulin release and by increasing insulin‐independent glucose disposal. J Clin Invest 1994; 93: 2263–6
  • Orskov L., Holst J. J., Moller J., Orskov C., Moller N., Alberti K. G., et al. GLP‐1 does not not acutely affect insulin sensitivity in healthy man. Diabetologia 1996; 39: 1227–32
  • Ahrén B., Larsson H., Holst J. J. Effects of glucagon‐like peptide‐1 on islet function and insulin sensitivity in noninsulin‐dependent diabetes mellitus. J Clin Endocrinol Metab 1997; 82: 473–8
  • Holz G. G 4th., Kuhtreiber W. M., Habener J. F. Pancreatic beta‐cells are rendered glucose‐competent by the insulinotropic hormone glucagon‐like peptide‐1(7‐37). Nature 1993; 361: 362–5
  • Ritzel R., Orskov C., Holst J. J., Nauck M. A. Pharmacokinetic, insulinotropic, and glucagonostatic properties of GLP‐1 [7‐36 amide] after subcutaneous injection in healthy volunteers. Dose‐response‐relationships. Diabetologia 1995; 38: 720–5
  • Qualmann C., Nauck M. A., Holst J. J., Orskov C., Creutzfeldt W. Insulinotropic actions of intravenous glucagon‐like peptide‐1 (GLP‐1) [7‐36 amide] in the fasting state in healthy subjects. Acta Diabetol 1995; 32: 13–6
  • Knop F. K., Vilsboll T., Larsen S., Madsbad S., Holst J. J., Krarup T. No hypoglycemia after subcutaneous administration of glucagon‐like peptide‐1 in lean type 2 diabetic patients and in patients with diabetes secondary to chronic pancreatitis. Diabetes Care 2003; 26: 2581–7
  • Toft‐Nielsen M., Madsbad S., Holst J. J. Exaggerated secretion of glucagon‐like peptide‐1 (GLP‐1) could cause reactive hypoglycaemia. Diabetologia 1998; 41: 1180–6
  • Edwards C. M., Todd J. F., Ghatei M. A., Bloom S. R. Subcutaneous glucagon‐like peptide‐1 (7‐36) amide is insulinotropic and can cause hypoglycaemia in fasted healthy subjects. Clin Sci 1998; 95: 719–24
  • Vilsboll T., Krarup T., Madsbad S., Holst J. J. No reactive hypoglycaemia in Type 2 diabetic patients after subcutaneous administration of GLP‐1 and intravenous glucose. Diabet Med 2001; 18: 144–9
  • UK Prospective Diabetes Study (UKPDS) Group. Intensive blood‐glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 1998; 352: 837–53
  • Barragan J. M., Rodriguez R. E., Blazquez E. Changes in arterial blood pressure and heart rate induced by glucagon‐like peptide‐1‐(7‐36) amide in rats. Am J Physiol 1994; 266: E459–66
  • Yu M., Moreno C., Hoagland K. M., Dahly A., Ditter K., Mistry M., et al. Antihypertensive effect of glucagon‐like peptide 1 in Dahl salt‐sensitive rats. J Hypertens 2003; 21: 1125–35
  • Gros R., You X., Baggio L. L., Kabir M. G., Sadi A. M., Mungrue I. N., et al. Cardiac function in mice lacking the glucagon‐like peptide‐1 receptor. Endocrinology 2003; 144: 2242–52
  • Edwards C. M., Edwards A. V., Bloom S. R. Cardiovascular and pancreatic endocrine responses to glucagon‐like peptide‐1(7‐36) amide in the conscious calf. Exp Physiol 1997; 82: 709–16
  • Nikolaidis L. A., Doverspike A., Hentosz T., Zourelias L., Shen Y. T., Elahi D., et al. Glucagon‐like peptide‐1 limits myocardial stunning following brief coronary occlusion and reperfusion in conscious canines. J Pharmacol Exp Ther 2005; 312: 303–8
  • Nystrom T., Gutniak M. K., Zhang Q., Zhang F., Holst J. J., Ahren B., et al. Effects of glucagon‐like peptide‐1 on endothelial function in type 2 diabetes patients with stable coronary artery disease. Am J Physiol Endocrinol Metab 2004; 287: E1209–15
  • Nikolaidis L. A., Mankad S., Sokos G. G., Miske G., Shah A., Elahi D., et al. Effects of glucagon‐like peptide‐1 in patients with acute myocardial infarction and left ventricular dysfunction after successful reperfusion. Circulation 2004; 109: 962–5
  • Tang‐Christensen M., Larsen P. J., Goke R., Fink‐Jensen A., Jessop D. S., Moller M., et al. Central administration of GLP‐1‐(7‐36) amide inhibits food and water intake in rats. Am J Physiol 1996; 271: R848–56
  • Tang‐Christensen M., Vrang N., Larsen P. J. Glucagon‐like peptide 1(7‐36) amide's central inhibition of feeding and peripheral inhibition of drinking are abolished by neonatal monosodium glutamate treatment. Diabetes 1998; 47: 530–7
  • Yamamoto H., Kishi T., Lee C. E., Choi B. J., Fang H., Hollenberg A. N., et al. Glucagon‐like peptide‐1‐responsive catecholamine neurons in the area postrema link peripheral glucagon‐like peptide‐1 with central autonomic control sites. J Neurosci 2003; 23: 2939–46
  • Gutzwiller J. P., Goke B., Drewe J., Hildebrand P., Ketterer S., Handschin D., et al. Glucagon‐like peptide‐1: a potent regulator of food intake in humans. Gut 1999; 44: 81–6
  • Gutzwiller J. P., Tschopp S., Bock A., Zehnder C. E., Huber A. R., Kreyenbuehl M., et al. Glucagon‐like peptide 1 induces natriuresis in healthy subjects and in insulin‐resistant obese men. J Clin Endocrinol Metab 2004; 89: 3055–61
  • Perry T., Haughey N. J., Mattson M. P., Egan J. M., Greig N. H. Protection and reversal of excitotoxic neuronal damage by glucagon‐like peptide‐1 and exendin‐4. J Pharmacol Exp Ther 2002; 302: 881–8
  • Perry T., Lahiri D. K., Sambamurti K., Chen D., Mattson M. P., Egan J. M., et al. Glucagon‐like peptide‐1 decreases endogenous amyloid‐beta peptide (Abeta) levels and protects hippocampal neurons from death induced by Abeta and iron. J Neurosci Res 2003; 72: 603–12
  • During M. J., Cao L., Zuzga D. S., Francis J. S., Fitzsimons H. L., Jiao X., et al. Glucagon‐like peptide‐1 receptor is involved in learning and neuroprotection. Nat Med 2003; 9: 1173–9
  • Deacon C. F., Knudsen L. B., Madsen K., Wiberg F. C., Jacobsen O., Holst J. J. Dipeptidyl peptidase IV resistant analogues of glucagon‐like peptide‐1 which have extended metabolic stability and improved biological activity. Diabetologia 1998; 41: 271–8
  • Nauck M. A., Kleine N., Orskov C., Holst J. J., Willms B., Creutzfeldt W. Normalization of fasting hyperglycaemia by exogenous glucagon‐like peptide 1 (7‐36 amide) in type 2 (non‐insulin‐dependent) diabetic patients. Diabetologia 1993; 36: 741–4
  • Todd J. F., Edwards C. M., Ghatei M. A., Mather H. M., Bloom S. R. Subcutaneous glucagon‐like peptide‐1 improves postprandial glycaemic control over a 3‐week period in patients with early type 2 diabetes. Clin Sci 1998; 95: 325–9
  • Gutniak M. K., Larsson H., Sanders S. W., Juneskans O., Holst J. J., Ahren B. GLP‐1 tablet in type 2 diabetes in fasting and postprandial conditions. Diabetes Care 1997; 20: 1874–9
  • Zander M., Taskiran M., Toft‐Nielsen M. B., Madsbad S., Holst J. J. Additive glucose‐lowering effects of glucagon‐like peptide‐1 and metformin in type 2 diabetes. Diabetes Care 2001; 24: 720–5
  • Zander M., Madsbad S., Madsen J. L., Holst J. J. Effect of 6‐week course of glucagon‐like peptide 1 on glycaemic control, insulin sensitivity, and beta‐cell function in type 2 diabetes: a parallel‐group study. Lancet 2002; 359: 824–30
  • Meneilly G. S., Greig N., Tildesley H., Habener J. F., Egan J. M., Elahi D. Effects of 3 months of continuous subcutaneous administration of glucagon‐like peptide 1 in elderly patients with type 2 diabetes. Diabetes Care 2003; 26: 2835–41
  • Zander M., Christiansen A., Madsbad S., Holst J. J. Additive effects of glucagon‐like peptide 1 and pioglitazone in patients with type 2 diabetes. Diabetes Care 2004; 27: 1910–4
  • Raufman J. P., Singh L., Singh G., Eng J. Truncated glucagon‐like peptide‐1 interacts with exendin receptors on dispersed acini from guinea pig pancreas. Identification of a mammalian analogue of the reptilian peptide exendin‐4. J Biol Chem 1992; 267: 21432–7
  • Edwards C. M., Stanley S. A., Davis R., Brynes A. E., Frost G. S., Seal L. J., et al. Exendin‐4 reduces fasting and postprandial glucose and decreases energy intake in healthy volunteers. Am J Physiol Endocrinol Metab 2001; 281: E155–61
  • Greig N. H., Holloway H. W., De Ore K. A., Jani D., Wang Y., Zhou J., et al. Once daily injection of exendin‐4 to diabetic mice achieves long‐term beneficial effects on blood glucose concentrations. Diabetologia 1999; 42: 45–50
  • Young A. A., Gedulin B. R., Bhavsar S., Bodkin N., Jodka C., Hansen B., et al. Glucose‐lowering and insulin‐sensitizing actions of exendin‐4: studies in obese diabetic (ob/ob, db/db) mice, diabetic fatty Zucker rats, and diabetic rhesus monkeys (Macaca mulatta). Diabetes 1999; 48: 1026–34
  • Xu G., Stoffers D. A., Habener J. F., Bonner‐Weir S. Exendin‐4 stimulates both beta‐cell replication and neogenesis, resulting in increased beta‐cell mass and improved glucose tolerance in diabetic rats. Diabetes 1999; 48: 2270–6
  • Tourrel C., Bailbe D., Meile M. J., Kergoat M., Portha B. Glucagon‐like peptide‐1 and exendin‐4 stimulate beta‐cell neogenesis in streptozotocin‐treated newborn rats resulting in persistently improved glucose homeostasis at adult age. Diabetes 2001; 50: 1562–70
  • Szayna M., Doyle M. E., Betkey J. A., Holloway H. W., Spencer R. G., Greig N. H., et al. Exendin‐4 decelerates food intake, weight gain, and fat deposition in Zucker rats. Endocrinology 2000; 141: 1936–41
  • Egan J. M., Clocquet A. R., Elahi D. The insulinotropic effect of acute exendin‐4 administered to humans: comparison of nondiabetic state to type 2 diabetes. J Clin Endocrinol Metab 2002; 87: 1282–90
  • Kolterman O. G., Buse J. B., Fineman M. S., Gaines E., Heintz S., Bicsak T. A., et al. Synthetic exendin‐4 (exenatide) significantly reduces postprandial and fasting plasma glucose in subjects with type 2 diabetes. J Clin Endocrinol Metab 2003; 88: 3082–9
  • Dupre J., Behme M. T., McDonald T. J. Exendin‐4 normalized postcibal glycemic excursions in type 1 diabetes. J Clin Endocrinol Metab 2004; 89: 3469–73
  • Egan J. M., Meneilly G. S., Elahi D. Effects of 1‐mo bolus subcutaneous administration of exendin‐4 in type 2 diabetes. Am J Physiol Endocrinol Metab 2003; 284: E1072–9
  • Fineman M. S., Bicsak T. A., Shen L. Z., Taylor K., Gaines E., Varns A., et al. Effect on glycemic control of exenatide (synthetic exendin‐4) additive to existing metformin and/or sulfonylurea treatment in patients with type 2 diabetes. Diabetes Care 2003; 26: 2370–7
  • Fineman M. S., Shen L. Z., Taylor K., Kim D. D., Baron A. D. Effectiveness of progressive dose‐escalation of exenatide (exendin‐4) in reducing dose‐limiting side effects in subjects with type 2 diabetes. Diabetes Metab Res Rev 2004; 20: 411–7
  • Buse J. B., Henry R. R., Han J., Kim D. D., Fineman M. S., Baron AD; Exenatide‐113 Clinical Study Group. Effects of exenatide (exendin‐4) on glycemic control over 30 weeks in sulfonylurea‐treated patients with type 2 diabetes. Diabetes Care 2004; 27: 2628–35
  • Knudsen L. B., Nielsen P. F., Huusfeldt P. O., Johansen N. L., Madsen K., Pedersen F. Z., et al. Potent derivatives of glucagon‐like peptide‐1 with pharmacokinetic properties suitable for once daily administration. J Med Chem 2000; 43: 1664–9
  • Larsen P. J., Fledelius C., Knudsen L. B., Tang‐Christensen M. Systemic administration of the long‐acting GLP‐1 derivative NN2211 induces lasting and reversible weight loss in both normal and obese rats. Diabetes 2001; 50: 2530–9
  • Sturis J., Gotfredsen C. F., Romer J., Rolin B., Ribel U., Brand C. L., et al. GLP‐1 derivative liraglutide in rats with beta‐cell deficiencies: influence of metabolic state on beta‐cell mass dynamics. Br J Pharmacol 2003; 140: 123–32
  • Bock T., Pakkenberg B., Buschard K. The endocrine pancreas in non‐diabetic rats after short‐term and long‐term treatment with the long‐acting GLP‐1 derivative NN2211. APMIS 2003; 111: 1117–24
  • Rolin B., Larsen M. O., Gotfredsen C. F., Deacon C. F., Carr R. D., Wilken M., et al. The long‐acting GLP‐1 derivative NN2211 ameliorates glycemia and increases beta‐cell mass in diabetic mice. Am J Physiol Endocrinol Metab 2002; 283: E745–52
  • Ribel U., Larsen M. O., Rolin B., Carr R. D., Wilken M., Sturis J., et al. NN2211: a long‐acting glucagon‐like peptide‐1 derivative with anti‐diabetic effects in glucose‐intolerant pigs. Eur J Pharmacol 2002; 451: 217–25
  • Elbrond B., Jakobsen G., Larsen S., Agerso H., Jensen L. B., Rolan P., et al. Pharmacokinetics, pharmacodynamics, safety, and tolerability of a single‐dose of NN2211, a long‐acting glucagon‐like peptide 1 derivative, in healthy male subjects. Diabetes Care 2002; 25: 1398–404
  • Juhl C. B., Hollingdal M., Sturis J., Jakobsen G., Agerso H., Veldhuis J., et al. Bedtime administration of NN2211, a long‐acting GLP‐1 derivative, substantially reduces fasting and postprandial glycemia in type 2 diabetes. Diabetes 2002; 51: 424–9
  • Degn K. B., Juhl C. B., Sturis J., Jakobsen G., Brock B., Chandramouli V., et al. One week's treatment with the long‐acting glucagon‐like peptide 1 derivative liraglutide (NN2211) markedly improves 24‐h glycemia and alpha‐ and beta‐cell function and reduces endogenous glucose release in patients with type 2 diabetes. Diabetes 2004; 53: 1187–94
  • Edwards C. M., Bloom S. R. The incretins‐outdated terminology in man?. Diabetologia 1999; 42: 1148–9
  • Harder H., Nielsen L., Tu D. T., Astrup A. The effect of liraglutide, a long‐acting glucagon‐like peptide 1 derivative, on glycemic control, body composition, and 24‐h energy expenditure in patients with type 2 diabetes. Diabetes Care 2004; 27: 1915–21
  • Madsbad S., Schmitz O., Ranstam J., Jakobsen G., Matthews D. R., NN2211‐1310 International Study Group. Improved glycemic control with no weight increase in patients with type 2 diabetes after once‐daily treatment with the long‐acting glucagon‐like peptide 1 analog liraglutide (NN2211): a 12‐week, double‐blind, randomized, controlled trial. Diabetes Care 2004; 27: 1335–42
  • UK Prospective Diabetes Study (UKPDS) Group. Effect of intensive blood‐glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet 1998; 352: 854–65
  • Green B. D., Gault V. A., O'harte F. P., Flatt P. R. Structurally modified analogues of glucagon‐like peptide‐1 (GLP‐1) and glucose‐dependent insulinotropic polypeptide (GIP) as future antidiabetic agents. Curr Pharm Des 2004; 10: 3651–62
  • Kim J. G., Baggio L. L., Bridon D. P., Castaigne J. P., Robitaille M. F., Jette L., et al. Development and characterization of a glucagon‐like peptide 1‐albumin conjugate: the ability to activate the glucagon‐like peptide 1 receptor in vivo. Diabetes 2003; 52: 751–9
  • Baggio L. L., Huang Q., Brown T. J., Drucker D. J. A recombinant human glucagon‐like peptide (GLP)‐1‐albumin protein (albugon) mimics peptidergic activation of GLP‐1 receptor‐dependent pathways coupled with satiety, gastrointestinal motility, and glucose homeostasis. Diabetes 2004; 53: 2492–500
  • Marguet D., Baggio L., Kobayashi T., Bernard A. M., Pierres M., Nielsen P. F., et al. Enhanced insulin secretion and improved glucose tolerance in mice lacking CD26. Proc Natl Acad Sci U S A 2000; 97: 6874–9
  • Conarello S. L., Li Z., Ronan J., Roy R. S., Zhu L., Jiang G., et al. Mice lacking dipeptidyl peptidase IV are protected against obesity and insulin resistance. Proc Natl Acad Sci U S A 2003; 100: 6825–30
  • Mentlein R., Gallwitz B., Schmidt W. E. Dipeptidyl‐peptidase IV hydrolyses gastric inhibitory polypeptide, glucagon‐like peptide‐1(7‐36)amide, peptide histidine methionine and is responsible for their degradation in human serum. Eur J Biochem 1993; 214: 829–35
  • Hansotia T., Baggio L. L., Delmeire D., Hinke S. A., Yamada Y., Tsukiyama K., et al. Double incretin receptor knockout (DIRKO) mice reveal an essential role for the enteroinsular axis in transducing the glucoregulatory actions of DPP‐IV inhibitors. Diabetes 2004; 53: 1326–35
  • Bauvois B., Sanceau J., Wietzerbin J. Human U937 cell surface peptidase activities: characterization and degradative effect on tumor necrosis factor‐alpha. Eur J Immunol 1992; 22: 923–30
  • Maes M., De Meester I., Scharpe S., Desnyder R., Ranjan R., Meltzer H. Y. Alterations in plasma dipeptidyl peptidase IV enzyme activity in depression and schizophrenia: effects of antidepressants and antipsychotic drugs. Acta Psychiatr Scand 1996; 93: 1–8
  • Darmoul D., Lacasa M., Chantret I., Swallow D. M., Trugnan G. Isolation of a cDNA probe for the human intestinal dipeptidylpeptidase IV and assignment of the gene locus DPP4 to chromosome 2. Ann Hum Genet 1990; 54: 191–7
  • Hildebrandt M., Reutter W., Arck P., Rose M., Klapp B. F. A guardian angel: the involvement of dipeptidyl peptidase IV in psychoneuroendocrine function, nutrition and immune defence. Clin Sci 2000; 99: 93–104
  • Reimer M. K., Holst J. J., Ahren B. Long‐term inhibition of dipeptidyl peptidase IV improves glucose tolerance and preserves islet function in mice. Eur J Endocrinol 2002; 146: 717–27
  • Sudre B., Broqua P., White R. B., Ashworth D., Evans D. M., Haigh R., et al. Chronic inhibition of circulating dipeptidyl peptidase IV by FE 999011 delays the occurrence of diabetes in male zucker diabetic fatty rats. Diabetes 2002; 51: 1461–9
  • Pospisilik J. A., Stafford S. G., Demuth H. U., Brownsey R., Parkhouse W., Finegood D. T., et al. Long‐term treatment with the dipeptidyl peptidase IV inhibitor P32/98 causes sustained improvements in glucose tolerance, insulin sensitivity, hyperinsulinemia, and beta‐cell glucose responsiveness in VDF (fa/fa) Zucker rats. Diabetes 2002; 51: 943–50
  • Ahren B., Simonsson E., Larsson H., Landin‐Olsson M., Torgeirsson H., Jansson P. A., et al. Inhibition of dipeptidyl peptidase IV improves metabolic control over a 4‐week study period in type 2 diabetes. Diabetes Care 2002; 25: 869–75
  • Ahren B., Landin‐Olsson M., Jansson P. A., Svensson M., Holmes D., Schweizer A. Inhibition of dipeptidyl peptidase‐4 reduces glycemia, sustains insulin levels, and reduces glucagon levels in type 2 diabetes. J Clin Endocrinol Metab 2004; 89: 2078–84
  • Ahren B., Gomis R., Standl E., Mills D., Schweizer A. Twelve‐ and 52‐week efficacy of the dipeptidyl peptidase IV inhibitor LAF237 in metformin‐treated patients with type 2 diabetes. Diabetes Care 2004; 27: 2874–80

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.