957
Views
32
CrossRef citations to date
0
Altmetric
TRENDS IN MOLECULAR MEDICINE

ADP‐ribosylation of membrane proteins: Unveiling the secrets of a crucial regulatory mechanism in mammalian cells

, , , , , & show all
Pages 188-199 | Published online: 26 Aug 2009

References

  • Aktories K., Just I. Bacterial Protein Toxins. Springer Verlag, Berlin 2000
  • Corda D., Di Girolamo M. Functional aspects of protein mono‐ADP‐ribosylation. Embo J 2003; 22: 1953–8
  • Haag F., Koch‐Nolte F. ADP‐Ribosylation in Animal Tissues: Structure, Function and Biology of Mono(ADP‐Ribosyl)transferases and Related Enzymes,. Plenum Press, New York 1997; vol. 419
  • Moss J., Vaughan M. ADP‐ribosylating toxins and G proteins: Insights into signal transduction. American Society for Microbiology, Washington DC 1990
  • Seman M., Adriouch S., Haag F., Koch‐Nolte F. Ecto‐ADP‐ribosyltransferases (ARTs): emerging actors in cell communication and signaling. Curr Med Chem 2004; 11: 857–72
  • Salmi M., Jalkanen S. Cell‐surface enzymes in control of leukocyte trafficking. Nat Rev Immunol 2005; 5: 760–71
  • Moss J., Zolkiewska A., Okazaki I. ADP‐ribosylarginine hydrolases and ADP‐ribosyltransferases. Partners in ADP‐ribosylation cycles. Adv Exp Med Biol 1997; 419: 25–33
  • Collier R. J. Understanding the mode of action of diphtheria toxin: a perspective on progress during the 20th century. Toxicon 2001; 39: 1793–803
  • Wilde C., Aktories K. The Rho‐ADP‐ribosylating C3 exoenzyme from Clostridium botulinum and related C3‐like transferases. Toxicon 2001; 39: 1647–60
  • Wilde C., Chhatwal G. S., Aktories K. C3stau, a new member of the family of C3‐like ADP‐ribosyltransferases. Trends Microbiol 2002; 10: 5–7
  • Han S., Craig J. A., Putnam C. D., Carozzi N. B., Tainer J. A. Evolution and mechanism from structures of an ADP‐ribosylating toxin and NAD complex. Nat Struct Biol 1999; 6: 932–6
  • Richard J. F., Petit L., Gibert M., Marvaud J. C., Bouchaud C., Popoff M. R. Bacterial toxins modifying the actin cytoskeleton. Int Microbiol 1999; 2: 185–94
  • Otto H., Tezcan‐Merdol D., Girisch R., Haag F., Rhen M., Koch‐Nolte F. The spvB gene‐product of the salmonella enterica virulence plasmid is a mono(ADP‐ribosyl)transferase. Mol Microbiol 2000; 37: 1106–15
  • Kaufman M. R., Jia J., Zeng L., Ha U., Chow M., Jin S. Pseudomonas aeruginosa mediated apoptosis requires the ADP‐ribosylating activity of exoS. Microbiology 2000; 146((Pt 10))2531–41
  • Barbieri J. T. Pseudomonas aeruginosa exoenzyme S, a bifunctional type‐III secreted cytotoxin. Int J Med Microbiol 2000; 290: 381–7
  • Domenighini M., Rappuoli R. Three conserved consensus sequences identify the NAD‐binding site of ADP‐ribosylating enzymes, expressed by eukaryotes, bacteria and T‐even bacteriophages. Mol Microbiol 1996; 21: 667–74
  • Bazan J. F., Koch N. F. Sequence and structural links between distant ADP‐ribosyltransferase families. Adv Exp Med Biol 1997; 419: 99–107
  • Glowacki G., Braren R., Firner K., Nissen M., Kuhl M., Reche P., et al. The family of toxin‐related ecto‐ADP‐ribosyltransferases in humans and the mouse. Protein Sci 2002; 11: 1657–70
  • Ame J. C., Spenlehauer C., de Murcia G. The PARP superfamily. Bioessays 2004; 26: 882–93
  • Otto H., Reche P., Bazan F., Dittmar K., Haag F., Koch‐Nolte F. In silico characterization of the family of PARP‐like poly(ADP‐ribosyl)transferases (pARTs). BMC Genomics 2005; 6: 139
  • Koch‐Nolte F., Reche P., Haag F., Bazan F. ADP‐ribosyltransferases: plastic tools for inactivating protein and small molecular weight targets. J Biotech 2001; 92: 81–7
  • Pannifer A. D., Wong T. Y., Schwarzenbacher R., Renatus M., Petosa C., Bienkowska J., et al. Crystal structure of the anthrax lethal factor. Nature 2002; 414: 229–33
  • Tsuge H., Nagahama M., Nishimura H., Hisatsune J., Sakaguchi Y., Itogawa Y., et al. Crystal structure and site‐directed mutagenesis of enzymatic components from Clostridium perfringens iota‐toxin. J Mol Biol 2003; 325: 471–83
  • Haag F., Koch‐Nolte F., Kuhl M., Lorenzen S., Thiele H. G. Premature stop codons inactivate the RT6 genes of the human and chimpanzee species. J Mol Biol 1994; 243: 537–46
  • Koch‐Nolte F., Petersen D., Balasubramanian S., Haag F., Kahlke D., Willer T., et al. Mouse T cell membrane proteins Rt6‐1 and Rt6‐2 are arginine/protein mono(ADPribosyl)transferases and share secondary structure motifs with ADP‐ribosylating bacterial toxins. J Biol Chem 1996; 271: 7686–93
  • Hara N., Badruzzaman M., Sugae T., Shimoyama M., Tsuchiya M. Mouse Rt6.1 is a thiol‐dependent arginine‐specific ADP‐ ribosyltransferase. Eur J Biochem 1999; 259: 289–94
  • Krebs C., Koestner W., Nissen M., Welge V., Parusel I., Malavasi F., et al. Flow cytometric and immunoblot assays for cell surface ADP‐ribosylation using a monoclonal antibody specific for ethenoadenosine. Anal Biochem 2003; 314: 108–15
  • Yadollahi‐Farsani M., Kefalas P., Saxty B. A., MacDermot J. Polymorphic forms of human ADP‐ribosyltransferase‐1 differences in their catalytic activities revealed by labeling of membrane‐associated substrates. Eur J Biochem 1999; 262: 342–8
  • Zolkiewska A., Moss J. Integrin alpha 7 as substrate for a glycosylphosphatidylinositol‐anchored ADP‐ribosyltransferase on the surface of skeletal muscle cells. J Biol Chem 1993; 268: 25273–6
  • Zhao Z., Gruszczynska‐Biegala J., Zolkiewska A. ADP‐ribosylation of integrin alpha7 modulates the binding of integrin alpha7beta1 to laminin. Biochem J 2005; 385((Pt 1))309–17
  • Koch‐Nolte F., Glowacki G., Bannas P., Braasch F., Dubberke G., Ortolan E., et al. Use of genetic immunization to raise antibodies recognizing toxin‐related cell surface ADP‐ribosyltransferases in native conformation. Cell Immunol 2005; 236: 66–71
  • Levy I., Wu Y. Q., Roeckel N., Bulle F., Pawlak A., Siegrist S., et al. Human testis specifically expresses a homologue of the rodent T lymphocytes RT6 mRNA. Febs Lett 1996; 382: 276–80
  • Parusel I., Kahl S., Braasch F., Glowacki G., Halverson G. R., Reid M. E., et al. A panel of monoclonal antibodies recognizing GPI‐anchored ADP‐ribosyltransferase ART4, the carrier of the Dombrock blood group antigens. Cell Immunol 2005; 236: 59–65
  • Okazaki I. J., Kim H. J., Moss J. Cloning and characterization of a novel membrane‐associated lymphocyte NAD:arginine ADP‐ribosyltransferase. J Biol Chem 1996; 271: 22052–7
  • Glowacki G., Braren R., Cetkovic‐Cvrlje M., Leiter E. H., Haag F., Koch‐Nolte F. Structure, chromosomal localization, and expression of the gene for mouse ecto‐mono(ADP‐ribosyl)transferase ART5. Gene 2001; 275: 267–77
  • Weng B., Thompson W. C., Kim H. J., Levine R. L., Moss J. Modification of the ADP‐ribosyltransferase and NAD glycohydrolase activities of a mammalian transferase (ADP‐ribosyltransferase 5) by auto‐ADP‐ribosylation. J Biol Chem 1999; 274: 31797–803
  • Oka S., Kato J., Moss J. Identification and characterization of a mammalian 39‐kDa poly(ADP‐ribose) glycohydrolase. J Biol Chem 2006; 281: 705–13
  • Lin W., Ame J. C., Aboul‐Ela N., Jacobson E. L., Jacobson M. K. Isolation and characterization of the cDNA encoding bovine poly(ADP‐ribose) glycohydrolase. J Biol Chem 1997; 272: 11895–901
  • Patel C. N., Koh D. W., Jacobson M. K., Oliveira M. A. Identification of three critical acidic residues of poly(ADP‐ribose) glycohydrolase involved in catalysis: determining the PARG catalytic domain. Biochem J 2005; 388((Pt 2))493–500
  • Adriouch S., Ohlrogge W., Haag F., Koch‐Nolte F., Seman M. Rapid induction of naive T cell apoptosis by ecto‐nicotinamide adenine dinucleotide: requirement for mono(ADP‐ribosyl)transferase 2 and a downstream effector. J Immunol 2001; 167: 196–203
  • Liu Z. X., Azhipa O., Okamoto S., Govindarajan S., Dennert G. Extracellular nicotinamide adenine dinucleotide induces T cell apoptosis in vivo and in vitro. J Immunol 2001; 167: 4942–7
  • Seman M., Adriouch S., Scheuplein F., Krebs C., Freese D., Glowacki G., et al. NAD‐induced T cell death: ADP‐ribosylation of cell surface proteins by ART2 activates the cytolytic P2X7 purinoceptor. Immunity 2003; 19: 571–82
  • Scheuplein F., Adriouch S., Glowacki G., Haag F., Seman M., Koch‐Nolte F. Triggering of T‐cell apoptosis by toxin‐related ecto‐ADP‐ribosyltransferase ART2. Ann N Y Acad Sci 2003; 1010: 296–9
  • Ohlrogge W., Haag F., Lohler J., Seman M., Littman D. R., Killeen N., et al. Generation and characterization of ecto‐ADP‐ribosyltransferase ART2.1/ART2.2‐deficient mice. Mol Cell Biol 2002; 22: 7535–42
  • Zanovello P., Bronte V., Rosato A., Pizzo P., Di Virgilio F. Responses of mouse lymphocytes to extracellular ATP. II. Extracellular ATP causes cell type‐dependent lysis and DNA fragmentation. J Immunol 1990; 145: 1545–50
  • Di Virgilio F., Chiozzi P., Ferrari D., Falzoni S., Sanz J. M., Morelli A., et al. Nucleotide receptors: an emerging family of regulatory molecules in blood cells. Blood 2001; 97: 587–600
  • Surprenant A., Rassendren F., Kawashima E., North R. A., Buell G. The cytolytic P2Z receptor for extracellular ATP identified as a P2X receptor (P2X7). Science 1996; 272: 735–8
  • North R. A., Surprenant A. Pharmacology of cloned P2X receptors. Annu Rev Pharmacol Toxicol 2000; 40: 563–80
  • Adriouch S., Dox C., Welge V., Seman M., Koch‐Nolte F., Haag F. Cutting Edge: A Natural P451L Mutation in the Cytoplasmic Domain Impairs the Function of the Mouse P2X7 Receptor. J Immunol 2002; 169: 4108–12
  • Kahl S., Nissen M., Girisch R., Duffy T., Leiter E. H., Haag F., et al. Metalloprotease‐mediated shedding of enzymatically active mouse ecto‐ADP‐ribosyltransferase ART2.2 upon T cell activation. J Immunol 2000; 165: 4463–9
  • Koch‐Nolte F., Haag F., Kastelein R., Bazan F. Uncovered: the family relationship of a T‐cell‐membrane protein and bacterial toxins. Immunol Today 1996; 17: 402–5
  • Bruno T. F., Woods D. E., Mody C. H. Exoenzyme S from Pseudomonas aeruginosa induces apoptosis in T lymphocytes. J Leukoc Biol 2000; 67: 808–16
  • Simons K., Toomre D. Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 2000; 1: 31–9
  • Pike L. J. Lipid rafts: heterogeneity on the high seas. Biochem J 2004; 378((Pt 2))281–92
  • Horejsi V. The roles of membrane microdomains (rafts) in T cell activation. Immunol Rev 2003; 191: 148–64
  • Janes P. W., Ley S. C., Magee A. I. Aggregation of lipid rafts accompanies signaling via the T cell antigen receptor. J Cell Biol 1999; 147: 447–61
  • Marmor M. D., Julius M. Role for lipid rafts in regulating interleukin‐2 receptor signaling. Blood 2001; 98: 1489–97
  • Marwali M. R., Rey‐Ladino J., Dreolini L., Shaw D., Takei F. Membrane cholesterol regulates LFA‐1 function and lipid raft heterogeneity. Blood 2003; 102: 215–22
  • Bromley S. K., Burack W. R., Johnson K. G., Somersalo K., Sims T. N., Sumen C., et al. The immunological synapse. Annu Rev Immunol 2001; 19: 375–96
  • Okazaki I. J., Kim H. J., McElvaney N. G., Lesma E., Moss J. Molecular characterization of a glycosylphosphatidylinositol‐linked ADP‐ ribosyltransferase from lymphocytes. Blood 1996; 88: 915–21
  • Parkin E. T., Tan F., Skidgel R. A., Turner A. J., Hooper N. M. The ectodomain shedding of angiotensin‐converting enzyme is independent of its localisation in lipid rafts. J Cell Sci 2003; 116((Pt 15))3079–87
  • Cordy J. M., Hussain I., Dingwall C., Hooper N. M., Turner A. J. Exclusively targeting beta‐secretase to lipid rafts by GPI‐anchor addition up‐regulates beta‐site processing of the amyloid precursor protein. Proc Natl Acad Sci U S A 2003; 100: 11735–40
  • Bannas P., Adriouch S., Kahl S., Braasch F., Haag F., Koch‐Nolte F. Activity and specificity of toxin‐related mouse T cell ecto‐ADP‐ribosyltransferase ART2.2 depends on its association with lipid rafts. Blood 2005; 105: 3663–70
  • Lund F. E., Cockayne D. A., Randall T. D., Solvason N., Schuber F., Howard M. C. CD38: a new paradigm in lymphocyte activation and signal transduction. Immunol Rev 1998; 161: 79–93
  • Schuber F., Lund F. E. Structure and enzymology of ADP‐ribosyl cyclases: conserved enzymes that produce multiple calcium mobilizing metabolites. Curr Mol Med 2004; 4: 249–61
  • Partida‐Sanchez S., Goodrich S., Kusser K., Oppenheimer N., Randall T. D., Lund F. E. Regulation of dendritic cell trafficking by the ADP‐ribosyl cyclase CD38: impact on the development of humoral immunity. Immunity 2004; 20: 279–91
  • Partida‐Sanchez S., Cockayne D. A., Monard S., Jacobson E. L., Oppenheimer N., Garvy B., et al. Cyclic ADP‐ribose production by CD38 regulates intracellular calcium release, extracellular calcium influx and chemotaxis in neutrophils and is required for bacterial clearance in vivo. Nat Med 2001; 7: 1209–16
  • Cockayne D. A., Muchamuel T., Grimaldi J. C., Muller‐Steffner H., Randall T. D., Lund F. E., et al. Mice deficient for the ecto‐nicotinamide adenine dinucleotide glycohydrolase CD38 exhibit altered humoral immune responses. Blood 1998; 92: 1324–33
  • Zimmermann H., Braun N. Ecto‐nucleotidases—molecular structures, catalytic properties, and functional roles in the nervous system. Prog Brain Res 1999; 120: 371–85
  • Krebs C., Adriouch S., Braasch F., Koestner W., Leiter E. H., Seman M., et al. CD38 controls ADP‐ribosyltransferase‐2‐catalyzed ADP‐ribosylation of T cell surface proteins. J Immunol 2005; 174: 3298–305
  • Bruzzone S., Guida L., Zocchi E., Franco L., De Flora A. Connexin 43 hemi channels mediate Ca2+‐regulated transmembrane NAD+ fluxes in intact cells. FASEB J 2001; 15: 10–2
  • Mak T. W., Penninger J. M., Ohashi P. S. Knockout mice: a paradigm shift in modern immunology. Nat Rev Immunol 2001; 1: 11–9
  • Hickman‐Davis J. M. Implications of mouse genotype for phenotype. News Physiol Sci 2001; 16: 19–22
  • Kanaitsuka T., Bortell R., Stevens L. A., Moss J., Sardinha D., Rajan T. V., et al. Expression in BALB/c and C57BL/6 mice of Rt6‐1 and Rt6‐2 ADP‐ ribosyltransferases that differ in enzymatic activity: C57BL/6 Rt6‐1 is a natural transferase knockout. J Immunol 1997; 159: 2741–9
  • Koch‐Nolte F., Duffy T., Nissen M., Kahl S., Ablamunits V., Leiter E. H., et al. A new monoclonal antibody detects a developmentally regulated mouse ecto ADP‐ribosyltransferase on T cells: subset distribution, inbred strain variation, and modulation upon T cell activation. J Immunol 1999; 163: 6014–22
  • Aswad F., Kawamura H., Dennert G. High sensitivity of CD4+CD25+ regulatory T cells to extracellular metabolites nicotinamide adenine dinucleotide and ATP: a role for P2X7 receptors. J Immunol 2005; 175: 3075–83
  • Kawamura H., Aswad F., Minagawa M., Govindarajan S., Dennert G. P2X7 Receptors Regulate NKT Cells in Autoimmune Hepatitis. J Immunol 2006; 176: 2152–60
  • Solle M., Labasi J., Perregaux D. G., Stam E., Petrushova N., Koller B. H., et al. Altered cytokine production in mice lacking P2X(7) receptors. J Biol Chem 2001; 276: 125–32
  • Labasi J. M., Petrushova N., Donovan C., McCurdy S., Lira P., Payette M. M., et al. Absence of the P2X7 receptor alters leukocyte function and attenuates an inflammatory response. J Immunol 2002; 168: 6436–45
  • Chen J., Chen Y‐G., Reifsnyder P. C., Schott W. H., Lee C‐H., Osborne M., et al. Targeted disruption of CD38 accelerates autoimmune diabetes in NOD/Lt mice by enhancing autoimmunity in an ART2‐dependent fashion. J Immunol 2006; 176, in press
  • Han M. K., Cho Y. S., Kim Y. S., Yim C. Y., Kim U. H. Interaction of two classes of ADP‐ribose transfer reactions in immune signaling. J Biol Chem 2000; 275: 20799–805
  • Verhoef P. A., Estacion M., Schilling W., Dubyak G. R. P2X7 receptor‐dependent blebbing and the activation of Rho‐effector kinases, caspases, and IL‐1 beta release. J Immunol 2003; 170: 5728–38
  • Guse A. H. Regulation of calcium signaling by the second messenger cyclic adenosine diphosphoribose (cADPR). Curr Mol Med 2004; 4: 239–48
  • Deaglio S., Vaisitti T., Bergui L., Bonello L., Horenstein A. L., Tamagnone L., et al. CD38 and CD100 lead a network of surface receptors relaying positive signals for B‐CLL growth and survival. Blood 2005; 105: 3042–50
  • la Sala A., Ferrari D., Di Virgilio F., Idzko M., Norgauer J., Girolomoni G. Alerting and tuning the immune response by extracellular nucleotides. J Leukoc Biol 2003; 73: 339–43
  • Haag F., Freese D., Scheuplein F., Ohlrogge W., Adriouch S., Seman M., et al. T Cells of Different Developmental Stages Differ in Sensitivity to Apoptosis Induced by Extracellular NAD. Dev Immunol 2002; 9: 197–202
  • Sun J., Maresso A. W., Kim J. J., Barbieri J. T. How bacterial ADP‐ribosylating toxins recognize substrates. Nat Struct Mol Biol 2004; 11: 868–76

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.