1,002
Views
33
CrossRef citations to date
0
Altmetric
ORIGINAL ARTICLE

Molecular characterization of two founder mutations causing long QT syndrome and identification of compound heterozygous patients

, , , , , , , & show all
Pages 294-304 | Published online: 08 Jul 2009

References

  • Ackerman M. J. The long QT syndrome: ion channel diseases of the heart. Mayo Clin Proc 1998; 73: 250–69
  • Schwartz P. J., Locati E. The idiopathic long QT syndrome: pathogenetic mechanisms and therapy. Eur Heart J 1985; 6: 103–14
  • Yang P., Kanki H., Drolet B., Yang T., Wei J., Viswanathan P. C., et al. Allelic variants in long‐QT disease genes in patients with drug‐associated torsades de pointes. Circulation 2002; 105: 1943–8
  • Keating M. T., Sanguinetti M. C. Molecular and cellular mechanisms of cardiac arrhythmias. Cell 2001; 104: 569–80
  • Mohler P. J., Schott J. J., Gramolini A. O., Dilly K. W., Guatimosim S., duBell W. H., et al. Ankyrin‐B mutation causes type 4 long‐QT cardiac arrhythmia and sudden cardiac death. Nature 2003; 421: 634–9
  • Piippo K., Laitinen P., Swan H., Toivonen L., Viitasalo M., Pasternack M., et al. Homozygosity for a HERG potassium channel mutation causes a severe form of long QT syndrome: identification of an apparent founder mutation in the Finns. J Am Coll Cardiol 2000; 35: 1919–25
  • Piippo K., Swan H., Pasternack M., Chapman H., Paavonen K., Viitasalo M., et al. A founder mutation of the potassium channel KCNQ1 in long QT syndrome: implications for estimation of disease prevalence and molecular diagnostics. J Am Coll Cardiol 2001; 37: 562–8
  • Fodstad H., Swan H., Laitinen P., Piippo K., Paavonen K., Viitasalo M., et al. Four potassium channel mutations account for 73% of the genetic spectrum underlying long‐QT syndrome (LQTS) and provide evidence for a strong founder effect in Finland. Ann Med 2004; 36: 53–63
  • Tranebjaerg L., Bathen J., Tyson J., Bitner‐Glindzicz M. Jervell and Lange‐Nielsen syndrome: a Norwegian perspective. Am J Med Genet 1999; 89: 137–46
  • de Jager T., Corbett C. H., Badenhorst J. C., Brink P. A., Corfield V. A. Evidence of a long QT founder gene with varying phenotypic expression in South African families. J Med Genet 1996; 33: 567–73
  • Brink P. A., Crotti L., Corfield V., Goosen A., Durrheim G., Hedley P., et al. Phenotypic variability and unusual clinical severity of congenital long‐QT syndrome in a founder population. Circulation 2005; 112: 2602–10
  • Priori S. G., Napolitano C., Schwartz P. J. Low penetrance in the long‐QT syndrome: clinical impact. Circulation 1999; 99: 529–33
  • Schwartz P. J., Priori S. G., Napolitano C. How really rare are rare diseases?: the intriguing case of independent compound mutations in the long QT syndrome. J Cardiovasc Electrophysiol 2003; 14: 1120–1
  • Berthet M., Denjoy I., Donger C., Demay L., Hammoude H., Klug D., et al. C‐terminal HERG mutations: the role of hypokalemia and a KCNQ1‐associated mutation in cardiac event occurrence. Circulation 1999; 99: 1464–70
  • Yamaguchi M., Shimizu M., Ino H., Terai H., Hayashi K., Kaneda T., et al. Compound heterozygosity for mutations Asp611Tyr in KCNQ1 and Asp609Gly in KCNH2 associated with severe long QT syndrome. Clin Sci (Lond) 2005; 108: 143–50
  • Westenskow P., Splawski I., Timothy K. W., Keating M. T., Sanguinetti M. C. Compound mutations: a common cause of severe long‐QT syndrome. Circulation 2004; 109: 1834–41
  • Kobori A., Sarai N., Shimizu W., Nakamura Y., Murakami Y., Makiyama T., et al. Additional gene variants reduce effectiveness of beta‐blockers in the LQT1 form of long QT syndrome. J Cardiovasc Electrophysiol 2004; 15: 190–9
  • Laitinen P., Fodstad H., Piippo K., Swan H., Toivonen L., Viitasalo M., et al. Survey of the coding region of the HERG gene in long QT syndrome reveals six novel mutations and an amino acid polymorphism with possible phenotypic effects. Hum Mutat 2000; 15: 580–1
  • World Medical Association Declaration of Helsinki. Recommendations guiding physicians in biomedical research involving human subjects. Cardiovasc Res 1997; 35: 2–3
  • Mohammad‐Panah R., Demolombe S., Riochet D., Leblais V., Loussouarn G., Pollard H., et al. Hyperexpression of recombinant CFTR in heterologous cells alters its physiological properties. Am J Physiol 1998; 274: C310–8
  • Chen Y. H., Xu S. J., Bendahhou S., Wang X. L., Wang Y., Xu W. Y., et al. KCNQ1 gain‐of‐function mutation in familial atrial fibrillation. Science 2003; 299: 251–4
  • Keller D. I., Rougier J. S., Kucera J. P., Benammar N., Fressart V., Guicheney P., et al. Brugada syndrome and fever: genetic and molecular characterization of patients carrying SCN5A mutations. Cardiovasc Res 2005; 67: 510–9
  • Anderson C. L., Delisle B. P., Anson B. D., Kilby J. A., Will M. L., Tester D. J., et al. Most LQT2 mutations reduce Kv11.1 (hERG) current by a class 2 (trafficking‐deficient) mechanism. Circulation 2006; 113: 365–73
  • Splawski I., Timothy K. W., Tateyama M., Clancy C. E., Malhotra A., Beggs A. H., et al. Variant of SCN5A sodium channel implicated in risk of cardiac arrhythmia. Science 2002; 297: 1333–6
  • Donger C., Denjoy I., Berthet M., Neyroud N., Cruaud C., Bennaceur M., et al. KVLQT1 C‐terminal missense mutation causes a forme fruste long‐QT syndrome. Circulation 1997; 96: 2778–81
  • Neyroud N., Tesson F., Denjoy I., Leibovici M., Donger C., Barhanin J., et al. A novel mutation in the potassium channel gene KVLQT1 causes the Jervell and Lange‐Nielsen cardioauditory syndrome. Nat Genet 1997; 15: 186–9
  • Li H., Chen Q., Moss A. J., Robinson J., Goytia V., Perry J. C., et al. New mutations in the KVLQT1 potassium channel that cause long‐QT syndrome. Circulation 1998; 97: 1264–9
  • Murray A., Donger C., Fenske C., Spillman I., Richard P., Dong Y. B., et al. Splicing mutations in KCNQ1: a mutation hot spot at codon 344 that produces in frame transcripts. Circulation 1999; 100: 1077–84
  • Splawski I., Shen J., Timothy K. W., Lehmann M. H., Priori S., Robinson J. L., et al. Spectrum of mutations in long‐QT syndrome genes. KVLQT1, HERG, SCN5A, KCNE1, and KCNE2. Circulation 2000; 102: 1178–85
  • Ackerman M. J., Tester D. J., Jones G. S., Will M. L., Burrow C. R., Curran M. E. Ethnic differences in cardiac potassium channel variants: implications for genetic susceptibility to sudden cardiac death and genetic testing for congenital long QT syndrome. Mayo Clin Proc 2003; 78: 1479–87
  • Morais Cabral J. H., Lee A., Cohen S. L., Chait B. T., Li M., Mackinnon R. Crystal structure and functional analysis of the HERG potassium channel N terminus: a eukaryotic PAS domain. Cell 1998; 95: 649–55
  • Paulussen A., Raes A., Matthijs G., Snyders D. J., Cohen N., Aerssens J. A novel mutation (T65P) in the PAS domain of the human potassium channel HERG results in the long QT syndrome by trafficking deficiency. J Biol Chem 2002; 277: 48610–6
  • Spector P. S., Curran M. E., Zou A., Keating M. T., Sanguinetti M. C. Fast inactivation causes rectification of the IKr channel. J Gen Physiol 1996; 107: 611–9
  • Chen J., Zou A., Splawski I., Keating M. T., Sanguinetti M. C. Long QT syndrome‐associated mutations in the Per‐Arnt‐Sim (PAS) domain of HERG potassium channels accelerate channel deactivation. J Biol Chem 1999; 274: 10113–8
  • Sanguinetti M. C., Jiang C., Curran M. E., Keating M. T. A mechanistic link between an inherited and an acquired cardiac arrhythmia: HERG encodes the IKr potassium channel. Cell 1995; 81: 299–307
  • Jongbloed R., Marcelis C., Velter C., Doevendans P., Geraedts J., Smeets H. DHPLC analysis of potassium ion channel genes in congenital long QT syndrome. Hum Mutat 2002; 20: 382–91
  • Pietila E., Fodstad H., Niskasaari E., Laitinen P. P. J., Swan H., Savolainen M., et al. Association between HERG K897T polymorphism and QT interval in middle‐aged Finnish women. J Am Coll Cardiol 2002; 40: 511–4
  • Paavonen K. J., Chapman H., Laitinen P. J., Fodstad H., Piippo K., Swan H., et al. Functional characterization of the common amino acid 897 polymorphism of the cardiac potassium channel KCNH2 (HERG). Cardiovasc Res 2003; 59: 603–11
  • Bezzina C. R., Verkerk A. O., Busjahn A., Jeron A., Erdmann J., Koopmann T. T., et al. A common polymorphism in KCNH2 (HERG) hastens cardiac repolarization. Cardiovasc Res 2003; 59: 27–36
  • Crotti L., Lundquist A. L., Insolia R., Pedrazzini M., Ferrandi C., De Ferrari G. M., et al. KCNH2‐K897T is a genetic modifier of latent congenital long‐QT syndrome. Circulation 2005; 112: 1251–8
  • Pfeufer A., Jalilzadeh S., Perz S., Mueller J. C., Hinterseer M., Illig T., et al. Common variants in myocardial ion channel genes modify the QT interval in the general population: results from the KORA study. Circ Res 2005; 96: 693–701
  • Anson B. D., Ackerman M. J., Tester D. J., Will M. L., Delisle B. P., Anderson C. L., et al. Molecular and functional characterization of common polymorphisms in HERG (KCNH2) potassium channels. Am J Physiol Heart Circ Physiol 2004; 286: H2434–41
  • Scherer C. R., Lerche C., Decher N., Dennis A. T., Maier P., Ficker E., et al. The antihistamine fexofenadine does not affect I(Kr) currents in a case report of drug‐induced cardiac arrhythmia. Br J Pharmacol 2002; 137: 892–900

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.