480
Views
14
CrossRef citations to date
0
Altmetric
REVIEW ARTICLE

Characterization and molecular detection of atherothrombosis by magnetic resonance—potential tools for individual risk assessment and diagnostics

, &
Pages 322-336 | Published online: 08 Jul 2009

References

  • Choudhury R. P., Fuster V., Fayad Z. A. Molecular, cellular and functional imaging of atherothrombosis. Nat Rev Drug Disc 2004; 3: 913–25
  • Pentikäinen M. O., Öörni K., Ala‐Korpela M., Kovanen P. T. Modified LDL—trigger of atherosclerosis and inflammation in the arterial intima. J Intern Med 2000; 247: 359–70
  • Fuster V., Moreno P. R., Fayad Z. A., Corti R., Badimon J. J. Atherothrombosis and high‐risk plaque. Part I: Evolving concepts. J Am Coll Cardiol 2005; 46: 937–54
  • Opie L. H., Commerford P. J., Gersh B. J. Controversies in stable coronary artery disease. Lancet 2006; 367: 69–78
  • Festa A., Williams K., Hanley A. J., Otvos J. D., Goff D. C., Wagenknecht L. E., et al. Nuclear magnetic resonance lipoprotein abnormalities in prediabetic subjects in the Insulin Resistance Atherosclerosis Study. Circulation 2005; 111: 3465–72
  • Naghavi M., Libby P., Falk E., Casscells S. W., Litovsky S., Rumberger J., et al. From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: Part I. Circulation 2003; 108: 1664–72
  • Naghavi M., Libby P., Falk E., Casscells S. W., Litovsky S., Rumberger J., et al. From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: Part II. Circulation 2003; 108: 1772–8
  • Fuster V. Editorial: The evolving role of CT and MRI in atherothrombotic evaluation and management. Nat Clin Pract Cardiovasc Med 2005; 2: 323
  • Kim W. Y., Danias P. G., Stuber M., Flamm S. D., Plein S., Nagel E., et al. Coronary magnetic resonance angiography for the detection of coronary stenoses. N Engl J Med 2001; 345: 1863–9
  • Glagov S., Weisenberg E., Zarins C. K., Stankunavicius R., Kolettis G. J. Compensatory enlargement of human atherosclerotic coronary arteries. N Engl J Med 1987; 316: 1371–5
  • Little W. C., Constantinescu M., Applegate R. J., Kutcher M. A., Burrows M. T., Kahl F. R., et al. Can coronary angiography predict the site of a subsequent myocardial infarction in patients with mild‐to‐moderate coronary artery disease?. Circulation 1988; 78: 1157–66
  • Lipinski M. J., Fuster V., Fisher E. A., Fayad Z. A. Technology insight: targeting of biological molecules for evaluation of high‐risk atherosclerotic plaques with magnetic resonance imaging. Nat Clin Pract Cardiovasc Med 2004; 1: 48–55
  • Winslow R. D., Mehta D., Fuster V. Sudden cardiac death: mechanisms, therapies and challenges. Nat Clin Pract Cardiovasc Med 2005; 2: 352–60
  • Raggi P., Taylor A., Fayad Z., O'Leary D., Nissen S., Rader D., et al. Atherosclerotic plaque imaging: contemporary role in preventive cardiology. Arch Intern Med 2005; 165: 2345–53
  • Ala‐Korpela M. 1H NMR spectroscopy of human blood plasma. Progr Nucl Magn Reson Spectr 1995; 27: 475–554
  • Lardo A. C., Fayad Z. A., Chronos N. A. F., Fuster V., editors. Cardiovascular magnetic resonance. Established and emerging applications. Martin Dunitz, London, New York 2003
  • Nagel E., van Rossum A. C., Fleck E., editors. Cardiovascular magnetic resonance. Steinkopff Verlag, Darmstadt 2004
  • Mollet N. R., Cademartiri F., van Mieghem C. A., Runza G., McFadden E. P., Baks T., et al. High‐resolution spiral computed tomography coronary angiography in patients referred for diagnostic conventional coronary angiography. Circulation 2005; 112: 2318–23
  • Sakuma H., Ichikawa Y., Suzawa N., Hirano T., Makino K., Koyama N., et al. Assessment of coronary arteries with total study time of less than 30 minutes by using whole‐heart coronary MR angiography. Radiology 2005; 237: 316–21
  • Fuster V., Fayad Z. A., Moreno P. R., Poon M., Corti R., Badimon J. J. Atherothrombosis and high‐risk plaque. Part II: Approaches by noninvasive computed tomographic/magnetic resonance imaging. J Am Coll Cardiol 2005; 46: 1209–18
  • Itskovich V. V., Samber D. D., Mani V., Aguinaldo J. G., Fallon J. T., Tang C. Y., et al. Quantification of human atherosclerotic plaques using spatially enhanced cluster analysis of multicontrast‐weighted magnetic resonance images. Magn Reson Med 2004; 52: 515–23
  • Cappendijk V. C., Cleutjens K. B., Kessels A. G., Heeneman S., Schurink G. W., Welten R. J., et al. Assessment of human atherosclerotic carotid plaque components with multisequence MR imaging: initial experience. Radiology 2005; 234: 487–92
  • Viereck J., Ruberg F. L., Qiao Y., Perez A. S., Detwiller K., Johnstone M., et al. MRI of atherothrombosis associated with plaque rupture. Arterioscler Thromb Vasc Biol 2005; 25: 240–5
  • Choudhury R. P., Aguinaldo J. G., Rong J. X., Kulak J. L., Kulak A. R., Reis E. D., et al. Atherosclerotic lesions in genetically modified mice quantified in vivo by non‐invasive high‐resolution magnetic resonance microscopy. Atherosclerosis 2002; 162: 315–21
  • McAteer M. A., Schneider J. E., Clarke K., Neubauer S., Channon K. M., Choudhury R. P. Quantification and 3D reconstruction of atherosclerotic plaque components in apolipoprotein E knockout mice using ex vivo high‐resolution MRI. Arterioscler Thromb Vasc Biol 2004; 24: 2384–90
  • Fayad Z. A., Fuster V., Fallon J. T., Jayasundera T., Worthley S. G., Helft G., et al. Noninvasive in vivo human coronary artery lumen and wall imaging using black‐blood magnetic resonance imaging. Circulation 2000; 102: 506–10
  • Kim W. Y., Stuber M., Bornert P., Kissinger K. V., Manning W. J., Botnar R. M. Three‐dimensional black‐blood cardiac magnetic resonance coronary vessel wall imaging detects positive arterial remodeling in patients with nonsignificant coronary artery disease. Circulation 2002; 106: 296–9
  • Jaffer F. A., O'Donnell C. J., Larson M. G., Chan S. K., Kissinger K. V., Kupka M. J., et al. Age and sex distribution of subclinical aortic atherosclerosis: a magnetic resonance imaging examination of the Framingham Heart Study. Arterioscler Thromb Vasc Biol 2002; 22: 849–54
  • Wiesmann F., Petersen S. E., Leeson P. M., Francis J. M., Robson M. D., Wang Q., et al. Global impairment of brachial, carotid, and aortic vascular function in young smokers: direct quantification by high‐resolution magnetic resonance imaging. J Am Coll Cardiol 2004; 44: 2056–64
  • Yuan C., Zhang S. X., Polissar N. L., Echelard D., Ortiz G., Davis J. W., et al. Identification of fibrous cap rupture with magnetic resonance imaging is highly associated with recent transient ischemic attack or stroke. Circulation 2002; 105: 181–5
  • European Carotid Surgery Trialists' Collaborative Group. Randomised trial of endarterectomy for recently symptomatic carotid stenosis: final results of the MRC European Carotid Surgery Trial (ECST). Lancet 1998; 351: 1379–87
  • Corti R., Fuster V., Fayad Z. A., Worthley S. G., Helft G., Smith D., et al. Lipid lowering by simvastatin induces regression of human atherosclerotic lesions. Two years' follow‐up by high‐resolution noninvasive magnetic resonance imaging. Circulation 2002; 106: 2884–7
  • Yonemura A., Momiyama Y., Fayad Z. A., Ayaori M., Ohmori R., Higashi K., et al. Effect of lipid‐lowering therapy with atorvastatin on atherosclerotic aortic plaques detected by noninvasive magnetic resonance imaging. J Am Coll Cardiol 2005; 45: 733–42
  • Taniguchi H., Momiyama Y., Fayad Z. A., Ohmori R., Ashida K., Kihara T., et al. In vivo magnetic resonance evaluation of associations between aortic atherosclerosis and both risk factors and coronary artery disease in patients referred for coronary angiography. Am Heart J 2004; 148: 137–43
  • Hegyi L., Hockings P. D., Benson M. G., Busza A. L., Overend P., Grimsditch D. C., et al. Short term arterial remodelling in the aortae of cholesterol fed New Zealand white rabbits shown in vivo by high‐resolution magnetic resonance imaging—implications for human pathology. Pathol Oncol Res 2004; 10: 159–65
  • Viles‐Gonzalez J. F., Fuster V., Corti R., Valdiviezo C., Hutter R., Corda S., et al. Atherosclerosis regression and TP receptor inhibition: effect of S18886 on plaque size and composition—a magnetic resonance imaging study. Eur Heart J 2005; 26: 1557–61
  • Choudhury R. P., Fuster V., Badimon J. J., Fisher E. A., Fayad Z. A. MRI and characterization of atherosclerotic plaque emerging applications and molecular imaging. Arterioscler Thromb Vasc Biol 2002; 22: 1065–74
  • Lombardi M., Aquaro G., Favilli B. Contrast media in cardiovascular magnetic resonance. Curr Pharm Des 2005; 11: 2151–61
  • Kramer C. M., Cerilli L. A., Hagspiel K., DiMaria J. M., Epstein F. H., Kern J. A. Magnetic resonance imaging identifies the fibrous cap in atherosclerotic abdominal aortic aneurysm. Circulation 2004; 109: 1016–21
  • Yuan C., Kerwin W. S., Ferguson M. S., Polissar N., Zhang S., Cai J., et al. Contrast‐enhanced high resolution MRI for atherosclerotic carotid artery tissue characterization. J Magn Reson Imaging 2002; 15: 62–7
  • Barkhausen J., Ebert W., Heyer C., Debatin J. F., Weinmann H. J. Detection of atherosclerotic plaque with Gadofluorine‐enhanced magnetic resonance imaging. Circulation 2003; 108: 605–9
  • Sirol M., Itskovich V. V., Mani V., Aguinaldo J. G. S., Fallon J. T., Misselwitz B., et al. Lipid‐rich atherosclerotic plaques detected by gadofluorine‐enhanced in vivo magnetic resonance imaging. Circulation 2004; 109: 2890–6
  • Cai J., Hatsukami T. S., Ferguson M. S., Kerwin W. S., Saam T., Chu B., et al. In vivo quantitative measurement of intact fibrous cap and lipid‐rich necrotic core size in atherosclerotic carotid plaque. Comparison of high‐resolution, contrast‐enhanced magnetic resonance imaging and histology. Circulation 2005; 112: 3437–44
  • Lanza G. M., Winter P. M., Caruthers S. D., Morawski A. M., Schmieder A. H., Crowder K. C., et al. Magnetic resonance molecular imaging with nanoparticles. J Nucl Cardiol 2004; 11: 733–43
  • Winter P. M., Morawski A. M., Caruthers S. D., Fuhrhop R. W., Zhang H., Williams T. A., et al. Molecular imaging of angiogenesis in early‐stage atherosclerosis with αvβ3‐integrin‐targeted nanoparticles. Circulation 2003; 108: 2270–4
  • Ruehm S. G., Corot C., Vogt P., Kolb S., Debatin J. F. Magnetic resonance imaging of atherosclerotic plaque with ultrasmall superparamagnetic particles of iron oxide in hyperlipidemic rabbits. Circulation 2001; 103: 415–22
  • Colley C. S., Kazarian S. G., Weinberg P. D., Lever M. J. Spectroscopic imaging of arteries and atherosclerotic plaques. Biopolymers 2004; 74: 328–35
  • Kooi M. E., Cappendijk V. C., Cleutjens K. B., Kessels A. G., Kitslaar P. J., Borgers M., et al. Accumulation of ultrasmall superparamagnetic particles of iron oxide in human atherosclerotic plaques can be detected by in vivo magnetic resonance imaging. Circulation 2003; 107: 2453–8
  • Cyrus T., Winter P. M., Caruthers S. D., Wickline S. A., Lanza G. M. Magnetic resonance nanoparticles for cardiovascular molecular imaging and therapy. Expert Rev Cardiovasc Ther 2005; 3: 705–15
  • Schmitz S. A., Taupitz M., Wagner S., Wolf K. J., Beyersdorff D., Hamm B. Magnetic resonance imaging of atherosclerotic plaques using superparamagnetic iron oxide particles. J Magn Reson Imaging 2001; 14: 355–61
  • Trivedi R. A., U‐King‐Im J. M., Graves M. J., Cross J. J., Horsley J., Goddard M. J., et al. In vivo detection of macrophages in human carotid atheroma: temporal dependence of ultrasmall superparamagnetic particles of iron oxide‐enhanced MRI. Stroke 2004; 35: 1631–5
  • Frias J. C., Williams K. J., Fisher E. A., Fayad Z. A. Recombinant HDL‐like nanoparticles: a specific contrast agent for MRI of atherosclerotic plaques. J Am Chem Soc 2004; 126: 16316–7
  • Flacke S., Fischer S., Scott M. J., Fuhrhop R. J., Allen J. S., McLean M., et al. Novel MRI contrast agent for molecular imaging of fibrin: implications for detecting vulnerable plaques. Circulation 2001; 104: 1280–5
  • Botnar R. M., Perez A. S., Witte S., Wiethoff A. J., Laredo J., Hamilton J., et al. In vivo molecular imaging of acute and subacute thrombosis using a fibrin‐binding magnetic resonance imaging contrast agent. Circulation 2004; 109: 2023–9
  • Sirol M., Aguinaldo J. G., Graham P. B., Weisskoff R., Lauffer R., Mizsei G., et al. Fibrin‐targeted contrast agent for improvement of in vivo acute thrombus detection with magnetic resonance imaging. Atherosclerosis 2005; 182: 79–85
  • Botnar R. M., Buecker A., Wiethoff A. J., Parsons E. C., Jr., Katoh M., Katsimaglis G., et al. In vivo magnetic resonance imaging of coronary thrombosis using a fibrin‐binding molecular magnetic resonance contrast agent. Circulation 2004; 110: 1463–6
  • Sirol M., Fuster V., Badimon J. J., Fallon J. T., Moreno P. R., Toussaint J. F., et al. Chronic thrombus detection with in vivo magnetic resonance imaging and a fibrin‐targeted contrast agent. Circulation 2005; 112: 1594–600
  • Morawski A. M., Winter P. M., Yu X., Fuhrhop R. W., Scott M. J., Hockett F., et al. Quantitative “magnetic resonance immunohistochemistry” with ligand‐targeted 19F nanoparticles. Magn Reson Med 2004; 52: 1255–62
  • Wickline S. A., Neubauer A. M., Winter P., Caruthers S., Lanza G. Applications of nanotechnology to atherosclerosis, thrombosis, and vascular biology. Arterioscler Thromb Vasc Biol 2006; 26: 435–41
  • Jaffer F. A., Weissleder R. Seeing within: molecular imaging of the cardiovascular system. Circ Res 2004; 94: 433–45
  • Otvos J. D., Jeyarajah E. J., Bennett D. W., Krauss R. M. Development of a proton nuclear magnetic resonance spectroscopic method for determining plasma lipoprotein concentrations and subspecies distributions from a single, rapid measurement. Clin Chem 1992; 38: 1632–8
  • Ala‐Korpela M., Korhonen A., Keisala J., Hörkkö S., Korpi P., Ingman L. P., et al. 1H NMR‐based absolute quantitation of human lipoproteins and their lipid contents directly from plasma. J Lipid Res 1994; 35: 2292–304
  • Bathen T. F., Krane J., Engan T., Bjerve K. S., Axelson D. Quantification of plasma lipids and apolipoproteins by use of proton NMR spectroscopy, multivariate and neural network analysis. NMR Biomed 2000; 13: 271–88
  • Brindle J. T., Antti H., Holmes E., Tranter G., Nicholson J. K., Bethell H. W., et al. Rapid and noninvasive diagnosis of the presence and severity of coronary heart disease using 1H‐NMR‐based metabonomics. Nat Med 2002; 8: 1439–44
  • Everett C. J., Mainous A. G 3rd., Koopman R. J., Diaz V. A. Predicting coronary heart disease risk using multiple lipid measures. Am J Cardiol 2005; 95: 986–8
  • Toussaint J. F., Pachot‐Clouard M., Kantor H. L. Tissue characterization of atherosclerotic plaque vulnerability by nuclear magnetic resonance. J Cardiovasc Magn Reson 2000; 2: 225–32
  • Peng S., Guo W., Morrisett J. D., Johnstone M. T., Hamilton J. A. Quantification of cholesteryl esters in human and rabbit atherosclerotic plaques by magic‐angle spinning 13C‐NMR. Arterioscler Thromb Vasc Biol 2000; 20: 2682–8
  • Toussaint J. F., Southern J. F., Fuster V., Kantor H. L. 13C‐NMR spectroscopy of human atherosclerotic lesions. Relation between fatty acid saturation, cholesteryl ester content, and luminal obstruction. Arterioscler Thromb 1994; 14: 1951–7
  • Stoneman V. E., Bennett M. R. Role of apoptosis in atherosclerosis and its therapeutic implications. Clin Sci (Lond) 2004; 107: 343–54
  • Hakumäki J. M., Poptani H., Sandmair A. M., Ylä‐Herttuala S., Kauppinen R. A. 1H MRS detects polyunsaturated fatty acid accumulation during gene therapy of glioma: implications for the in vivo detection of apoptosis. Nat Med 1999; 5: 1323–7
  • Trouard T. P., Altbach M. I., Hunter G. C., Eskelson C. D., Gmitro A. F. MRI and NMR spectroscopy of the lipids of atherosclerotic plaque in rabbits and humans. Magn Reson Med 1997; 38: 19–26
  • Öörni K., Posio P., Ala‐Korpela M., Jauhiainen M., Kovanen P. T. Sphingomyelinase induces aggregation and fusion of small very low‐density lipoprotein and intermediate‐density lipoprotein particles and increases their retention to human arterial proteoglycans. Arterioscler Thromb Vasc Biol 2005; 25: 1678–83
  • Ruberg F. L., Viereck J., Phinikaridou A., Qiao Y., Loscalzo J., Hamilton J. A. Identification of cholesteryl esters in human carotid atherosclerosis by ex vivo image‐guided proton magnetic resonance spectroscopy. J Lipid Res 2006; 47: 310–7
  • Szczepaniak L. S., Dobbins R. L., Metzger G. J., Sartoni‐D'Ambrosia G., Arbique D., Vongpatanasin W., et al. Myocardial triglycerides and systolic function in humans: in vivo evaluation by localized proton spectroscopy and cardiac imaging. Magn Reson Med 2003; 49: 417–23

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.