861
Views
25
CrossRef citations to date
0
Altmetric
REVIEW ARTICLE

Unraveling the complex genetics of familial combined hyperlipidemia

, &
Pages 337-351 | Published online: 08 Jul 2009

References

  • Rose H. G., Kranz P., Weinstock M., Juliano J., Haft J. I. Inheritance of combined hyperlipoproteinemia: evidence for a new lipoprotein phenotype. Am J Med 1973; 54: 148–60
  • Nikkila E. A., Aro A. Family study of serum lipids and lipoproteins in coronary heart‐disease. Lancet 1973; 1: 954–9
  • Goldstein J. L., Schrott H. G., Hazzard W. R., Bierman E. L., Motulsky A. G. Hyperlipidemia in coronary heart disease. II. Genetic analysis of lipid levels in 176 families and delineation of a new inherited disorder, combined hyperlipidemia. J Clin Invest 1973; 52: 1544–68
  • Hopkins P. N., Heiss G., Ellison R. C., Province M. A., Pankow J. S., Eckfeldt J. H., et al. Coronary artery disease risk in familial combined hyperlipidemia and familial hypertriglyceridemia: a case‐control comparison from the National Heart, Lung, and Blood Institute Family Heart Study. Circulation 2003; 108: 519–23
  • Vakkilainen J., Porkka K. V., Nuotio I., Pajukanta P., Suurinkeroinen L., Ylitalo K., et al. Glucose intolerance in familial combined hyperlipidaemia. EUFAM study group. Eur J Clin Invest 1998; 28: 24–32
  • Aro A. Serum lipids and lipoproteins in first degree relatives of young survivors of myocardial infarction. Acta Med Scand Suppl 1973; 553: 1–103
  • de Graaf J., Stalenhoef A. F. Defects of lipoprotein metabolism in familial combined hyperlipidaemia. Curr Opin Lipidol 1998; 9: 189–96
  • Cullen P., Farren B., Scott J., Farrall M. Complex segregation analysis provides evidence for a major gene acting on serum triglyceride levels in 55 British families with familial combined hyperlipidemia. Arterioscler Thromb 1994; 14: 1233–49
  • Jarvik G. P., Brunzell J. D., Austin M. A., Krauss R. M., Motulsky A. G., Wijsman E. Genetic predictors of FCHL in four large pedigrees. Influence of ApoB level major locus predicted genotype and LDL subclass phenotype. Arterioscler Thromb 1994; 14: 1687–94
  • Pajukanta P., Nuotio I., Terwilliger J. D., Porkka K. V., Ylitalo K., Pihlajamaki J., et al. Linkage of familial combined hyperlipidaemia to chromosome 1q21–q23. Nat Genet 1998; 18: 369–73
  • Pajukanta P., Terwilliger J. D., Perola M., Hiekkalinna T., Nuotio I., Ellonen P., et al. Genomewide scan for familial combined hyperlipidemia genes in finnish families, suggesting multiple susceptibility loci influencing triglyceride, cholesterol, and apolipoprotein B levels. Am J Hum Genet 1999; 64: 1453–63
  • Pajukanta P., Allayee H., Krass K. L., Kuraishy A., Soro A., Lilja H. E., et al. Combined analysis of genome scans of Dutch and Finnish families reveals a susceptibility locus for high‐density lipoprotein cholesterol on chromosome 16q. Am J Hum Genet 2003; 72: 903–17
  • Aouizerat B. E., Allayee H., Cantor R. M., Dallinga‐Thie G. M., Lanning C. D., de Bruin T. W., et al. Linkage of a candidate gene locus to familial combined hyperlipidemia: lecithin:cholesterol acyltransferase on 16q. Arterioscler Thromb Vasc Biol 1999; 19: 2730–6
  • Aouizerat B. E., Allayee H., Cantor R. M., Davis R. C., Lanning C. D., Wen P. Z., et al. A genome scan for familial combined hyperlipidemia reveals evidence of linkage with a locus on chromosome 11. Am J Hum Genet 1999; 65: 397–412
  • Allayee H., Krass K. L., Pajukanta P., Cantor R. M., van der Kallen C. J., Mar R., et al. Locus for elevated apolipoprotein B levels on chromosome 1p31 in families with familial combined hyperlipidemia. Circ Res 2002; 90: 926–31
  • Naoumova R. P., Bonney S. A., Eichenbaum‐Voline S., Patel H. N., Jones B., Jones E. L., et al. Confirmed locus on chromosome 11p and candidate loci on 6q and 8p for the triglyceride and cholesterol traits of combined hyperlipidemia. Arterioscler Thromb Vasc Biol 2003; 23: 2070–7
  • Pajukanta P., Lilja H. E., Sinsheimer J. S., Cantor R. M., Lusis A. J., Gentile M., et al. Familial combined hyperlipidemia is associated with upstream transcription factor 1 (USF1). Nat Genet 2004; 36: 371–6
  • Weissglas‐Volkov D., Huertas‐Vazquez A., Suviolahti E., Lee J. C., Plaisier C., Canizales‐Quinteros S., Tusie‐Luna T., et al. Common hepatic nuclear factor 4 alpha variants are associated with high serum lipid levels and the metabolic syndrome. Diabetes 2006; 55: 1970–7
  • Rada‐Iglesias A., Wallerman O., Koch C., Ameur A., Enroth S., Clelland G., et al. Binding sites for metabolic disease related transcription factors inferred at base pair resolution by chromatin immunoprecipitation and genomic microarrays. Hum Mol Genet 2005; 14: 3435–47
  • Ribeiro A., Pastier D., Kardassis D., Chambaz J., Cardot P. Cooperative binding of upstream stimulatory factor and hepatic nuclear factor 4 drives the transcription of the human apolipoprotein A‐II gene. J Biol Chem 1999; 274: 1216–25
  • Pastier D., Lacorte J. M., Chambaz J., Cardot P., Ribeiro A. Two initiator‐like elements are required for the combined activation of the human apolipoprotein C‐III promoter by upstream stimulatory factor and hepatic nuclear factor‐4. J Biol Chem 2002; 277: 15199–206
  • Frikke‐Schmidt R., Nordestgaard B. G., Jensen G. B., Tybjaerg‐Hansen A. Genetic variation in ABC transporter A1 contributes to HDL cholesterol in the general population. J Clin Invest 2004; 114: 1343–53
  • Cohen J. C., Kiss R. S., Pertsemlidis A., Marcel Y. L., McPherson R., Hobbs H. H. Multiple rare alleles contribute to low plasma levels of HDL cholesterol. Science 2004; 305: 869–72
  • Pei W., Baron H., Muller‐Myhsok B., Knoblauch H., Al‐Yahyaee S. A., Hui R., et al. Support for linkage of familial combined hyperlipidemia to chromosome 1q21–q23 in Chinese and German families. Clin Genet 2000; 57: 29–34
  • Coon H., Myers R. H., Borecki I. B., Arnett D. K., Hunt S. C., Province M. A., et al. Replication of linkage of familial combined hyperlipidemia to chromosome 1q with additional heterogeneous effect of apolipoprotein A‐I/C‐III/A‐IV locus. The NHLBI Family Heart Study. Arterioscler Thromb Vasc Biol 2000; 20: 2275–80
  • Huertas‐Vazquez A., Aguilar‐Salinas C., Lusis A. J., Cantor R. M., Canizales‐Quinteros S., Lee J. C., et al. Familial combined hyperlipidemia in Mexicans: association with upstream transcription factor 1 and linkage on chromosome 16q24.1. Arterioscler Thromb Vasc Biol 2005; 25: 1985–91
  • Hanson R. L., Ehm M. G., Pettitt D. J., Prochazka M., Thompson D. B., Timberlake D., et al. An autosomal genomic scan for loci linked to type II diabetes mellitus and body‐mass index in Pima Indians. Am J Hum Genet 1998; 63: 1130–8
  • Elbein S. C., Hoffman M. D., Teng K., Leppert M. F., Hasstedt S. J. A genome‐wide search for type 2 diabetes susceptibility genes in Utah Caucasians. Diabetes 1999; 48: 1175–82
  • Vionnet N., Hani El H., Dupont S., Gallina S., Francke S., Dotte S., et al. Genomewide search for type 2 diabetes‐susceptibility genes in French whites: evidence for a novel susceptibility locus for early‐onset diabetes on chromosome 3q27‐qter and independent replication of a type 2‐diabetes locus on chromosome 1q21–q24. Am J Hum Genet 2000; 67: 1470–80
  • Wiltshire S., Hattersley A. T., Hitman G. A., Walker M., Levy J. C., Sampson M., et al. A genomewide scan for loci predisposing to type 2 diabetes in a U.K. population (the Diabetes UK Warren 2 Repository): analysis of 573 pedigrees provides independent replication of a susceptibility locus on chromosome 1q. Am J Hum Genet 2001; 69: 553–69
  • Hsueh W. C., St Jean P. L., Mitchell B. D., Pollin T. I., Knowler W. C., Ehm M. G., et al. Genome‐wide and fine‐mapping linkage studies of type 2 diabetes and glucose traits in the Old Order Amish: evidence for a new diabetes locus on chromosome 14q11 and confirmation of a locus on chromosome 1q21–q24. Diabetes 2003; 52: 550–7
  • Watanabe R. M., Ghosh S., Langefeld C. D., Valle T. T., Hauser E. R., Magnuson V. L., et al. The Finland‐United States investigation of non‐insulin‐dependent diabetes mellitus genetics (FUSION) study. II. An autosomal genome scan for diabetes‐related quantitative‐trait loci. Am J Hum Genet 2000; 67: 1186–200
  • Xiang K., Wang Y., Zheng T., Jia W., Li J., Chen L., et al. Genome‐wide search for type 2 diabetes/impaired glucose homeostasis susceptibility genes in the Chinese: significant linkage to chromosome 6q21–q23 and chromosome 1q21–q24. Diabetes 2004; 53: 228–34
  • Langefeld C. D., Wagenknecht L. E., Rotter J. I., Williams A. H., Hokanson J. E., Saad M. F., et al. Linkage of the metabolic syndrome to 1q23–q31 in Hispanic families: the Insulin Resistance Atherosclerosis Study Family Study. Diabetes 2004; 53: 1170–4
  • Liu Y., Nusrat A., Schnell F. J., Reaves T. A., Walsh S., Pochet M., et al. Human junction adhesion molecule regulates tight junction resealing in epithelia. J Cell Sci 2000; 113((Pt 13))2363–74
  • Barton E. S., Forrest J. C., Connolly J. L., Chappell J. D., Liu Y., Schnell F. J., et al. Junction adhesion molecule is a receptor for reovirus. Cell 2001; 104: 441–51
  • Ostermann G., Weber K. S., Zernecke A., Schroder A., Weber C. JAM‐1 is a ligand of the beta(2) integrin LFA‐1 involved in transendothelial migration of leukocytes. Nat Immunol 2002; 3: 151–8
  • Vallet V. S., Casado M., Henrion A. A., Bucchini D., Raymondjean M., Kahn A., et al. Differential roles of upstream stimulatory factors 1 and 2 in the transcriptional response of liver genes to glucose. J Biol Chem 1998; 273: 20175–9
  • Casado M., Vallet V. S., Kahn A., Vaulont S. Essential role in vivo of upstream stimulatory factors for a normal dietary response of the fatty acid synthase gene in the liver. J Biol Chem 1999; 274: 2009–13
  • Iynedjian P. B. Identification of upstream stimulatory factor as transcriptional activator of the liver promoter of the glucokinase gene. Biochem J 1998; 333((Pt 3))705–12
  • Kutz S. M., Higgins C. E., Samarakoon R., Higgins S. P., Allen R. R., Qi L., et al. TGF‐beta‐induced PAI‐1 expression is E box/USF‐dependent and requires EGFR signaling. Exp Cell Res 2006; 312: 1093–105
  • Yang X. P., Freeman L. A., Knapper C. L., Amar M. J., Remaley A., Brewer H. B., Jr., et al. The E‐box motif in the proximal ABCA1 promoter mediates transcriptional repression of the ABCA1 gene. J Lipid Res 2002; 43: 297–306
  • Wang D., Sul H. S. Upstream stimulatory factor binding to the E‐box at ‐65 is required for insulin regulation of the fatty acid synthase promoter. J Biol Chem 1997; 272: 26367–74
  • Botma G. J., Verhoeven A. J., Jansen H. Hepatic lipase promoter activity is reduced by the C‐480T and G‐216A substitutions present in the common LIPC gene variant, and is increased by Upstream Stimulatory Factor. Atherosclerosis 2001; 154: 625–32
  • Salero E., Gimenez C., Zafra F. Identification of a non‐canonical E‐box motif as a regulatory element in the proximal promoter region of the apolipoprotein E gene. Biochem J 2003; 370((Pt 3))979–86
  • Nowak M., Helleboid‐Chapman A., Jakel H., Martin G., Duran‐Sandoval D., Staels B., et al. Insulin‐mediated down‐regulation of apolipoprotein A5 gene expression through the phosphatidylinositol 3‐kinase pathway: role of upstream stimulatory factor. Mol Cell Biol 2005; 25: 1537–48
  • Portois L., Tastenoy M., Viollet B., Svoboda M. Functional analysis of the glucose response element of the rat glucagon receptor gene in insulin‐producing INS‐1 cells. Biochim Biophys Acta 2002; 1574: 175–86
  • Read M. L., Clark A. R., Docherty K. The helix‐loop‐helix transcription factor USF (upstream stimulating factor) binds to a regulatory sequence of the human insulin gene enhancer. Biochem J 1993; 295((Pt 1))233–7
  • Martin C. C., Svitek C. A., Oeser J. K., Henderson E., Stein R., O'Brien R. M. Upstream stimulatory factor (USF) and neurogenic differentiation/beta‐cell E box transactivator 2 (NeuroD/BETA2) contribute to islet‐specific glucose‐6‐phosphatase catalytic‐subunit‐related protein (IGRP) gene expression. Biochem J 2003; 371((Pt 3))675–86
  • Travers M. T., Vallance A. J., Gourlay H. T., Gill C. A., Klein I., Bottema C. B., et al. Promoter I of the ovine acetyl‐CoA carboxylase‐alpha gene: an E‐box motif at ‐114 in the proximal promoter binds upstream stimulatory factor (USF)‐1 and USF‐2 and acts as an insulin‐response sequence in differentiating adipocytes. Biochem J 2001; 359((Pt 2))273–84
  • Smih F., Rouet P., Lucas S., Mairal A., Sengenes C., Lafontan M., et al. Transcriptional regulation of adipocyte hormone‐sensitive lipase by glucose. Diabetes 2002; 51: 293–300
  • Naukkarinen J., Gentile M., Soro‐Paavonen A., Saarela J., Koistinen H. A., Pajukanta P., et al. USF1 and dyslipidemias: converging evidence for a functional intronic variant. Hum Mol Genet 2005; 14: 2595–605
  • Attie A. D., Krauss R. M., Gray‐Keller M. P., Brownlie A., Miyazaki M., Kastelein J. J., et al. Relationship between stearoyl‐CoA desaturase activity and plasma triglycerides in human and mouse hypertriglyceridemia. J Lipid Res 2002; 43: 1899–907
  • Hoffstedt J., Ryden M., Wahrenberg H., van Harmelen V., Arner P. Upstream transcription factor‐1 gene polymorphism is associated with increased adipocyte lipolysis. J Clin Endocrinol Metab 2005; 90: 5356–60
  • Komulainen K., Alanne M., Auro K., Kilpikari R., Pajukanta P., Saarela J., et al. Risk Alleles of USF1‐Gene Predict Cardiovascular Disease of Women in Two Prospective Studies. PLoS Genetics 2006; 2: e69
  • Putt W., Palmen J., Nicaud V., Tregouet D. A., Tahri‐Daizadeh N., Flavell D. M., et al. Variation in USF1 shows haplotype effects, gene:gene and gene:environment associations with glucose and lipid parameters in the European Atherosclerosis Research Study II. Hum Mol Genet 2004; 13: 1587–97
  • Coon H., Xin Y., Hopkins P. N., Cawthon R. M., Hasstedt S. J., Hunt S. C. Upstream stimulatory factor 1 associated with familial combined hyperlipidemia, LDL cholesterol, and triglycerides. Hum Genet 2005; 117: 444–51
  • Ng M. C., Miyake K., So W. Y., Poon E. W., Lam V. K., Li J. K., et al. The linkage and association of the gene encoding upstream stimulatory factor 1 with type 2 diabetes and metabolic syndrome in the Chinese population. Diabetologia 2005; 48: 2018–24
  • Gibson F., Hercberg S., Froguel P. Common polymorphisms in the USF1 gene are not associated with type 2 diabetes in French Caucasians. Diabetes 2005; 54: 3040–2
  • Castellani L. W., Weinreb A., Bodnar J., Goto A. M., Doolittle M., Mehrabian M., et al. Mapping a gene for combined hyperlipidaemia in a mutant mouse strain. Nat Genet 1998; 18: 374–7
  • Bodnar J. S., Chatterjee A., Castellani L. W., Ross D. A., Ohmen J., Cavalcoli J., et al. Positional cloning of the combined hyperlipidemia gene Hyplip1. Nat Genet 2002; 30: 110–6
  • Pajukanta P., Bodnar J. S., Sallinen R., Chu M., Airaksinen T., Xiao Q., et al. Fine mapping of Hyplip1 and the human homolog, a potential locus for FCHL. Mamm Genome 2001; 12: 238–45
  • Coon H., Singh N., Dunn D., Eckfeldt J. H., Province M. A., Hopkins P. N., et al. TXNIP gene not associated with familial combined hyperlipidemia in the NHLBI Family Heart Study. Atherosclerosis 2004; 174: 357–62
  • van der Vleuten G. M., Hijmans A., Heil S., Blom H. J., Stalenhoef A. F., de Graaf J. Can we exclude the TXNIP gene as a candidate gene for familial combined hyperlipidemia?. Am J Med Genet A 2006; 140: 1010–2
  • Wojciechowski A. P., Farrall M., Cullen P., Wilson T. M., Bayliss J. D., Farren B., et al. Familial combined hyperlipidaemia linked to the apolipoprotein AI‐CII‐AIV gene cluster on chromosome 11q23–q24. Nature 1991; 349: 161–4
  • Hayden M. R., Kirk H., Clark C., Frohlich J., Rabkin S., McLeod R., et al. DNA polymorphisms in and around the Apo‐A1‐CIII genes and genetic hyperlipidemias. Am J Hum Genet 1987; 40: 421–30
  • Dallinga‐Thie G. M., Bu X. D., van Linde‐Sibenius Trip M., Rotter J. I., Lusis A. J., de Bruin T. W. Apolipoprotein A‐I/C‐III/A‐IV gene cluster in familial combined hyperlipidemia: effects on LDL‐cholesterol and apolipoproteins B and C‐III. J Lipid Res 1996; 37: 136–47
  • Dallinga‐Thie G. M., van Linde‐Sibenius Trip M., Rotter J. I., Cantor R. M., Bu X., Lusis A. J., et al. Complex genetic contribution of the Apo AI‐CIII‐AIV gene cluster to familial combined hyperlipidemia. Identification of different susceptibility haplotypes. J Clin Invest 1997; 99: 953–61
  • Xu C. F., Talmud P., Schuster H., Houlston R., Miller G., Humphries S. Association between genetic variation at the APO AI‐CIII‐AIV gene cluster and familial combined hyperlipidaemia. Clin Genet 1994; 46: 385–97
  • Groenendijk M., Cantor R. M., Blom N. H., Rotter J. I., de Bruin T. W., Dallinga‐Thie G. M. Association of plasma lipids and apolipoproteins with the insulin response element in the apoC‐III promoter region in familial combined hyperlipidemia. J Lipid Res 1999; 40: 1036–44
  • Ribalta J., La Ville A. E., Vallve J. C., Humphries S., Turner P. R., Masana L. A variation in the apolipoprotein C‐III gene is associated with an increased number of circulating VLDL and IDL particles in familial combined hyperlipidemia. J Lipid Res 1997; 38: 1061–9
  • Groenendijk M., Cantor R. M., De Bruin T. W., Dallinga‐Thie G. M. New genetic variants in the apoA‐I and apoC‐III genes and familial combined hyperlipidemia. J Lipid Res 2001; 42: 188–94
  • Deeb S. S., Nevin D. N., Iwasaki L., Brunzell J. D. Two novel apolipoprotein A‐IV variants in individuals with familial combined hyperlipidemia and diminished levels of lipoprotein lipase activity. Hum Mutat 1996; 8: 319–25
  • Marcil M., Boucher B., Gagne E., Davignon J., Hayden M., Genest J., Jr. Lack of association of the apolipoprotein A‐I‐C‐III‐A‐IV gene XmnI and SstI polymorphisms and of the lipoprotein lipase gene mutations in familial combined hyperlipoproteinemia in French Canadian subjects. J Lipid Res 1996; 37: 309–19
  • Wijsman E. M., Brunzell J. D., Jarvik G. P., Austin M. A., Motulsky A. G., Deeb S. S. Evidence against linkage of familial combined hyperlipidemia to the apolipoprotein AI‐CIII‐AIV gene complex. Arterioscler Thromb Vasc Biol 1998; 18: 215–26
  • Tahvanainen E., Pajukanta P., Porkka K., Nieminen S., Ikavalko L., Nuotio I., et al. Haplotypes of the ApoA‐I/C‐III/A‐IV gene cluster and familial combined hyperlipidemia. Arterioscler Thromb Vasc Biol 1998; 18: 1810–7
  • Groenendijk M., Cantor R. M., de Bruin T. W., Dallinga‐Thie G. M. The apoAI‐CIII‐AIV gene cluster. Atherosclerosis 2001; 157: 1–11
  • Pennacchio L. A., Olivier M., Hubacek J. A., Cohen J. C., Cox D. R., Fruchart J. C., et al. An apolipoprotein influencing triglycerides in humans and mice revealed by comparative sequencing. Science 2001; 294: 169–73
  • Pennacchio L. A., Olivier M., Hubacek J. A., Krauss R. M., Rubin E. M., Cohen J. C. Two independent apolipoprotein A5 haplotypes influence human plasma triglyceride levels. Hum Mol Genet 2002; 11: 3031–8
  • Endo K., Yanagi H., Araki J., Hirano C., Yamakawa‐Kobayashi K., Tomura S. Association found between the promoter region polymorphism in the apolipoprotein A‐V gene and the serum triglyceride level in Japanese schoolchildren. Hum Genet 2002; 111: 570–2
  • Baum L., Tomlinson B., Thomas G. N. APOA5‐1131T>C polymorphism is associated with triglyceride levels in Chinese men. Clin Genet 2003; 63: 377–9
  • Pennacchio L. A., Rubin E. M. Apolipoprotein A5, a newly identified gene that affects plasma triglyceride levels in humans and mice. Arterioscler Thromb Vasc Biol 2003; 23: 529–34
  • Nabika T., Nasreen S., Kobayashi S., Masuda J. The genetic effect of the apoprotein AV gene on the serum triglyceride level in Japanese. Atherosclerosis 2002; 165: 201–4
  • Talmud P. J., Hawe E., Martin S., Olivier M., Miller G. J., Rubin E. M., et al. Relative contribution of variation within the APOC3/A4/A5 gene cluster in determining plasma triglycerides. Hum Mol Genet 2002; 11: 3039–46
  • Kao J. T., Wen H. C., Chien K. L., Hsu H. C., Lin S. W. A novel genetic variant in the apolipoprotein A5 gene is associated with hypertriglyceridemia. Hum Mol Genet 2003; 12: 2533–9
  • Martin S., Nicaud V., Humphries S. E., Talmud P. J. Contribution of APOA5 gene variants to plasma triglyceride determination and to the response to both fat and glucose tolerance challenges. Biochim Biophys Acta 2003; 1637: 217–25
  • Wright W. T., Young I. S., Nicholls D. P., Patterson C., Lyttle K., Graham C. A. SNPs at the APOA5 gene account for the strong association with hypertriglyceridaemia at the APOA5/A4/C3/A1 locus on chromosome 11q23 in the Northern Irish population. Atherosclerosis 2006; 185: 353–60
  • Eichenbaum‐Voline S., Olivier M., Jones E. L., Naoumova R. P., Jones B., Gau B., et al. Linkage and association between distinct variants of the APOA1/C3/A4/A5 gene cluster and familial combined hyperlipidemia. Arterioscler Thromb Vasc Biol 2004; 24: 167–74
  • Mar R., Pajukanta P., Allayee H., Groenendijk M., Dallinga‐Thie G., Krauss R. M., et al. Association of the APOLIPOPROTEIN A1/C3/A4/A5 gene cluster with triglyceride levels and LDL particle size in familial combined hyperlipidemia. Circ Res 2004; 94: 993–9
  • Ribalta J., Figuera L., Fernandez‐Ballart J., Vilella E., Castro Cabezas M., Masana L., et al. Newly identified apolipoprotein AV gene predisposes to high plasma triglycerides in familial combined hyperlipidemia. Clin Chem 2002; 48: 1597–600
  • Aouizerat B. E., Kulkarni M., Heilbron D., Drown D., Raskin S., Pullinger C. R., et al. Genetic analysis of a polymorphism in the human apoA‐V gene: effect on plasma lipids. J Lipid Res 2003; 44: 1167–73
  • Hubacek J. A. Apolipoprotein A5 and triglyceridemia. Focus on the effects of the common variants. Clin Chem Lab Med 2005; 43: 897–902
  • Schaap F. G., Rensen P. C., Voshol P. J., Vrins C., Van Der Vliet H. N., Chamuleau R. A., et al. ApoAV reduces plasma triglycerides by inhibiting very low density lipoprotein‐triglyceride (VLDL‐TG) production and stimulating lipoprotein lipase‐mediated VLDL‐TG hydrolysis. J Biol Chem 2004; 279: 27941–7
  • van der Vliet H. N., Schaap F. G., Levels J. H., Ottenhoff R., Looije N., Wesseling J. G., et al. Adenoviral overexpression of apolipoprotein A‐V reduces serum levels of triglycerides and cholesterol in mice. Biochem Biophys Res Commun 2002; 295: 1156–9
  • Vu‐Dac N., Gervois P., Jakel H., Nowak M., Bauge E., Dehondt H., et al. Apolipoprotein A5, a crucial determinant of plasma triglyceride levels, is highly responsive to peroxisome proliferator‐activated receptor alpha activators. J Biol Chem 2003; 278: 17982–5
  • Nevin D. N., Brunzell J. D., Deeb S. S. The LPL gene in individuals with familial combined hyperlipidemia and decreased LPL activity. Arterioscler Thromb 1994; 14: 869–73
  • Reymer P. W., Gagne E., Groenemeyer B. E., Zhang H., Forsyth I., Jansen H., et al. A lipoprotein lipase mutation (Asn291Ser) is associated with reduced HDL cholesterol levels in premature atherosclerosis. Nat Genet 1995; 10: 28–34
  • de Bruin T. W., Mailly F., van Barlingen H. H., Fisher R., Castro Cabezas M., Talmud P., et al. Lipoprotein lipase gene mutations D9N and N291S in four pedigrees with familial combined hyperlipidaemia. Eur J Clin Invest 1996; 26: 631–9
  • Reymer P. W., Groenemeyer B. E., Gagne E., Miao L., Appelman E. E., Seidel J. C., et al. A frequently occurring mutation in the lipoprotein lipase gene (Asn291Ser) contributes to the expression of familial combined hyperlipidemia. Hum Mol Genet 1995; 4: 1543–9
  • Campagna F., Montali A., Baroni M. G., Maria A. T., Ricci G., Antonini R., et al. Common variants in the lipoprotein lipase gene, but not those in the insulin receptor substrate‐1, the beta3‐adrenergic receptor, and the intestinal fatty acid binding protein‐2 genes, influence the lipid phenotypic expression in familial combined hyperlipidemia. Metabolism 2002; 51: 1298–305
  • Samuels M. E., Forbey K. C., Reid J. E., Abkevich V., Bulka K., Wardell B. R., et al. Identification of a common variant in the lipoprotein lipase gene in a large Utah kindred ascertained for coronary heart disease: the ‐93G/D9N variant predisposes to low HDL‐C/high triglycerides. Clin Genet 2001; 59: 88–98
  • Hoffer M. J., Bredie S. J., Snieder H., Reymer P. W., Demacker P. N., Havekes L. M., et al. Gender‐related association between the ‐93T–>G/D9N haplotype of the lipoprotein lipase gene and elevated lipid levels in familial combined hyperlipidemia. Atherosclerosis 1998; 138: 91–9
  • Hoffer M. J., Bredie S. J., Boomsma D. I., Reymer P. W., Kastelein J. J., de Knijff P., et al. The lipoprotein lipase (Asn291–>Ser) mutation is associated with elevated lipid levels in families with familial combined hyperlipidaemia. Atherosclerosis 1996; 119: 159–67
  • Yang W. S., Nevin D. N., Iwasaki L., Peng R., Brown B. G., Brunzell J. D., et al. Regulatory mutations in the human lipoprotein lipase gene in patients with familial combined hyperlipidemia and coronary artery disease. J Lipid Res 1996; 37: 2627–37
  • Yang W. S., Nevin D. N., Peng R., Brunzell J. D., Deeb S. S. A mutation in the promoter of the lipoprotein lipase (LPL) gene in a patient with familial combined hyperlipidemia and low LPL activity. Proc Natl Acad Sci U S A 1995; 92: 4462–6
  • Pajukanta P., Porkka K. V., Antikainen M., Taskinen M. R., Perola M., Murtomaki‐Repo S., et al. No evidence of linkage between familial combined hyperlipidemia and genes encoding lipolytic enzymes in Finnish families. Arterioscler Thromb Vasc Biol 1997; 17: 841–50
  • Gagne E., Genest J., Jr., Zhang H., Clarke L. A., Hayden M. R. Analysis of DNA changes in the LPL gene in patients with familial combined hyperlipidemia. Arterioscler Thromb 1994; 14: 1250–7
  • Stein Y., Stein O. Lipoprotein lipase and atherosclerosis. Atherosclerosis 2003; 170: 1–9
  • Hoffer M. J., Snieder H., Bredie S. J., Demacker P. N., Kastelein J. J., Frants R. R., et al. The V73M mutation in the hepatic lipase gene is associated with elevated cholesterol levels in four Dutch pedigrees with familial combined hyperlipidemia. Atherosclerosis 2000; 151: 443–50
  • Bowden D. W., Sale M., Howard T. D., Qadri A., Spray B. J., Rothschild C. B., et al. Linkage of genetic markers on human chromosomes 20 and 12 to NIDDM in Caucasian sib pairs with a history of diabetic nephropathy. Diabetes 1997; 46: 882–6
  • Ji L., Malecki M., Warram J. H., Yang Y., Rich S. S., Krolewski A. S. New susceptibility locus for NIDDM is localized to human chromosome 20q. Diabetes 1997; 46: 876–81
  • Lembertas A. V., Perusse L., Chagnon Y. C., Fisler J. S., Warden C. H., Purcell‐Huynh D. A., et al. Identification of an obesity quantitative trait locus on mouse chromosome 2 and evidence of linkage to body fat and insulin on the human homologous region 20q. J Clin Invest 1997; 100: 1240–7
  • Zouali H., Hani E. H., Philippi A., Vionnet N., Beckmann J. S., Demenais F., et al. A susceptibility locus for early‐onset non‐insulin dependent (type 2) diabetes mellitus maps to chromosome 20q, proximal to the phosphoenolpyruvate carboxykinase gene. Hum Mol Genet 1997; 6: 1401–8
  • Ghosh S., Watanabe R. M., Hauser E. R., Valle T., Magnuson V. L., Erdos M. R., et al. Type 2 diabetes: evidence for linkage on chromosome 20 in 716 Finnish affected sib pairs. Proc Natl Acad Sci U S A 1999; 96: 2198–203
  • Damcott C. M., Hoppman N., Ott S. H., Reinhart L. J., Wang J., Pollin T. I., et al. Polymorphisms in both promoters of hepatocyte nuclear factor 4‐alpha are associated with type 2 diabetes in the Amish. Diabetes 2004; 53: 3337–41
  • Silander K., Mohlke K. L., Scott L. J., Peck E. C., Hollstein P., Skol A. D., et al. Genetic variation near the hepatocyte nuclear factor‐4 alpha gene predicts susceptibility to type 2 diabetes. Diabetes 2004; 53: 1141–9
  • Hansen S. K., Rose C. S., Glumer C., Drivsholm T., Borch‐Johnsen K., Jorgensen T., et al. Variation near the hepatocyte nuclear factor (HNF)‐4alpha gene associates with type 2 diabetes in the Danish population. Diabetologia 2005; 48: 452–8
  • Love‐Gregory L. D., Wasson J., Ma J., Jin C. H., Glaser B., Suarez B. K., et al. A common polymorphism in the upstream promoter region of the hepatocyte nuclear factor‐4 alpha gene on chromosome 20q is associated with type 2 diabetes and appears to contribute to the evidence for linkage in an ashkenazi jewish population. Diabetes 2004; 53: 1134–40
  • Winckler W., Graham R. R., de Bakker P. I., Sun M., Almgren P., Tuomi T., et al. Association testing of variants in the hepatocyte nuclear factor 4alpha gene with risk of type 2 diabetes in 7,883 people. Diabetes 2005; 54: 886–92
  • Yamagata K., Furuta H., Oda N., Kaisaki P. J., Menzel S., Cox N. J., et al. Mutations in the hepatocyte nuclear factor‐4alpha gene in maturity‐onset diabetes of the young (MODY1). Nature 1996; 384: 458–60
  • Lilja H. E., Suviolahti E., Soro‐Paavonen A., Hiekkalinna T., Day A., Lange K., et al. Locus for quantitative HDL‐cholesterol on chromosome 10q in Finnish families with dyslipidemia. J Lipid Res 2004; 45: 1876–84
  • Soro A., Pajukanta P., Lilja H. E., Ylitalo K., Hiekkalinna T., Perola M., et al. Genome scans provide evidence for low‐HDL‐C loci on chromosomes 8q23, 16q24.1‐24.2, and 20q13.11 in Finnish families. Am J Hum Genet 2002; 70: 1333–40
  • Yu Y., Wyszynski D. F., Waterworth D. M., Wilton S. D., Barter P. J., Kesaniemi Y. A., et al. Multiple QTLs influencing triglyceride and HDL and total cholesterol levels identified in families with atherogenic dyslipidemia. J Lipid Res 2005; 46: 2202–13
  • Li W. D., Dong C., Li D., Garrigan C., Price R. A. A genome scan for serum triglyceride in obese nuclear families. J Lipid Res 2005; 46: 432–8
  • Olefsky J. M., Farquhar J. W., Reaven G. M. Reappraisal of the role of insulin in hypertriglyceridemia. Am J Med 1974; 57: 551–60
  • Geurts J. M., Janssen R. G., van Greevenbroek M. M., van der Kallen C. J., Cantor R. M., Bu X., et al. Identification of TNFRSF1B as a novel modifier gene in familial combined hyperlipidemia. Hum Mol Genet 2000; 9: 2067–74
  • van der Vleuten G. M., Kluijtmans L. A., Hijmans A., Blom H. J., Stalenhoef A. F., de Graaf J. The Gln223Arg polymorphism in the leptin receptor is associated with familial combined hyperlipidemia. Int J Obes (Lond) 2006; 30: 892–8
  • van Greevenbroek M. M., van der Kallen C. J., Geurts J. M., Janssen R. G., Buurman W. A., de Bruin T. W. Soluble receptors for tumor necrosis factor‐alpha (TNF‐R p55 and TNF‐R p75) in familial combined hyperlipidemia. Atherosclerosis 2000; 153: 1–8
  • Allayee H., Castellani L. W., Cantor R. M., de Bruin T. W., Lusis A. J. Biochemical and genetic association of plasma apolipoprotein A‐II levels with familial combined hyperlipidemia. Circ Res 2003; 92: 1262–7
  • Aouizerat B. E., Kane J. P. Apolipoprotein A‐II: active or passive role in familial combined hyperlipidemia. Circ Res 2003; 92: 1179–81
  • Martin‐Campos J. M., Escola‐Gil J. C., Ribas V., Blanco‐Vaca F. Apolipoprotein A‐II, genetic variation on chromosome 1q21–q24, and disease susceptibility. Curr Opin Lipidol 2004; 15: 247–53
  • Lockhart D. J., Winzeler E. A. Genomics, gene expression and DNA arrays. Nature 2000; 405: 827–36
  • Morello F., de Bruin T. W., Rotter J. I., Pratt R. E., van der Kallen C. J., Hladik G. A., et al. Differential gene expression of blood‐derived cell lines in familial combined hyperlipidemia. Arterioscler Thromb Vasc Biol 2004; 24: 2149–54
  • Eurlings P. M., Van Der Kallen C. J., Geurts J. M., Kouwenberg P., Boeckx W. D., De Bruin T. W. Identification of differentially expressed genes in subcutaneous adipose tissue from subjects with familial combined hyperlipidemia. J Lipid Res 2002; 43: 930–5
  • Meex S. J., van der Kallen C. J., van Greevenbroek M. M., Eurlings P. M., El Hasnaoui M., Evelo C. T., et al. Up‐regulation of CD36/FAT in preadipocytes in familial combined hyperlipidemia. FASEB J 2005; 19: 2063–5
  • Van Eerdewegh P., Little R. D., Dupuis J., Del Mastro R. G., Falls K., Simon J., et al. Association of the ADAM33 gene with asthma and bronchial hyperresponsiveness. Nature 2002; 418: 426–30
  • Hugot J. P., Chamaillard M., Zouali H., Lesage S., Cezard J. P., Belaiche J., et al. Association of NOD2 leucine‐rich repeat variants with susceptibility to Crohn's disease. Nature 2001; 411: 599–603
  • Ogura Y., Bonen D. K., Inohara N., Nicolae D. L., Chen F. F., Ramos R., et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn's disease. Nature 2001; 411: 603–6
  • Mahaney M. C., Almasy L., Rainwater D. L., VandeBerg J. L., Cole S. A., Hixson J. E., et al. A quantitative trait locus on chromosome 16q influences variation in plasma HDL‐C levels in Mexican Americans. Arterioscler Thromb Vasc Biol 2003; 23: 339–45
  • Shearman A. M., Ordovas J. M., Cupples L. A., Schaefer E. J., Harmon M. D., Shao Y., et al. Evidence for a gene influencing the TG/HDL‐C ratio on chromosome 7q32.3‐qter: a genome‐wide scan in the Framingham study. Hum Mol Genet 2000; 9: 1315–20
  • Dastani Z., Quiogue L., Plaisier C., Engert J. C., Marcil M., Genest J., et al. Evidence for a gene influencing high‐density lipoprotein cholesterol on chromosome 4q31.21. Arterioscler Thromb Vasc Biol 2006; 26: 392–7
  • Lyssenko V., Almgren P., Anevski D., Orho‐Melander M., Sjögren M., Saloranta C., Tuomi T., Groop L., the Botnia Study Group. Genetic Prediction of Future Type 2 Diabetes. PLoS Med 2005; 2: 1299–308
  • Altshuler D., Brooks L. D., Chakravarti A., Collins F. S., Daly M. J., Donnelly P. A haplotype map of the human genome. Nature 2005; 437: 1299–320
  • Collins F. S., Guyer M. S., Charkravarti A. Variations on a theme: cataloging human DNA sequence variation. Science 1997; 278: 1580–1
  • Risch N., Merikangas K. The future of genetic studies of complex human diseases. Science 1996; 273: 1516–7
  • Lander E. S. The new genomics: global views of biology. Science 1996; 274: 536–9
  • Jorgenson E., Witte J. Coverage and Power in Association Studies. Am J Hum Genet 2006; 78: 884–8

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.