1,043
Views
30
CrossRef citations to date
0
Altmetric
REVIEW ARTICLE

Voltage‐gated sodium channels: Action players with many faces

, &
Pages 472-482 | Published online: 08 Jul 2009

References

  • Plummer N. W., Meisler M. H. Evolution and diversity of mammalian sodium channel genes. Genomics 1999; 57: 323–31
  • George A. L., Jr., Knittle T. J., Tamkun M. M. Molecular cloning of an atypical voltage‐gated sodium channel expressed in human heart and uterus: evidence for a distinct gene family. Proc Natl Acad Sci U S A 1992; 89: 4893–7
  • Watanabe E., Hiyama T. Y., Kodama R., Noda M. NaX sodium channel is expressed in non‐myelinating Schwann cells and alveolar type II cells in mice. Neurosci Lett 2002; 330: 109–13
  • Goldin A. L. Resurgence of sodium channel research. Annu Rev Physiol 2001; 63: 871–94
  • Hiyama T. Y., Watanabe E., Okado H., Noda M. The subfornical organ is the primary locus of sodium‐level sensing by Na(x) sodium channels for the control of salt‐intake behavior. J Neurosci 2004; 24: 9276–81
  • Watanabe E., Fujikawa A., Matsunaga H., Yasoshima Y., Sako N., Yamamoto T., et al. Nav2/NaG channel is involved in control of salt‐intake behavior in the CNS. J Neurosci 2000; 20: 7743–51
  • Makielski J. C., Ye B., Valdivia C. R., Pagel M. D., Pu J., Tester D. J., et al. A ubiquitous splice variant and a common polymorphism affect heterologous expression of recombinant human SCN5A heart sodium channels. Circ Res 2003; 93: 821–8
  • Plummer N. W., McBurney M. W., Meisler M. H. Alternative splicing of the sodium channel SCN8A predicts a truncated two‐domain protein in fetal brain and non‐neuronal cells. J Biol Chem 1997; 272: 24008–15
  • Plummer N. W., Galt J., Jones J. M., Burgess D. L., Sprunger L. K., Kohrman D. C., et al. Exon organization, coding sequence, physical mapping, and polymorphic intragenic markers for the human neuronal sodium channel gene SCN8A. Genomics 1998; 54: 287–96
  • Raymond C. K., Castle J., Garrett‐Engele P., Armour C. D., Kan Z., Tsinoremas N., et al. Expression of alternatively spliced sodium channel alpha‐subunit genes. Unique splicing patterns are observed in dorsal root ganglia. J Biol Chem 2004; 279: 46234–41
  • Schaller K. L., Krzemien D. M., McKenna N. M., Caldwell J. H. Alternatively spliced sodium channel transcripts in brain and muscle. J Neurosci 1992; 12: 1370–81
  • Thimmapaya R., Neelands T., Niforatos W., vis‐Taber R. A., Choi W., Putman C. B., et al. Distribution and functional characterization of human Nav1.3 splice variants. Eur J Neurosci 2005; 22: 1–9
  • Dietrich P. S., McGivern J. G., Delgado S. G., Koch B. D., Eglen R. M., Hunter J. C., et al. Functional analysis of a voltage‐gated sodium channel and its splice variant from rat dorsal root ganglia. J Neurochem 1998; 70: 2262–72
  • Heron S. E., Crossland K. M., Andermann E., Phillips H. A., Hall A. J., Bleasel A., et al. Sodium‐channel defects in benign familial neonatal‐infantile seizures. Lancet 2002; 360: 851–2
  • Kasai N., Fukushima K., Ueki Y., Prasad S., Nosakowski J., Sugata K., et al. Genomic structures of SCN2A and SCN3A. Gene 2001; 264: 113–22
  • Lu C. M., Brown G. B. Isolation of a human‐brain sodium‐channel gene encoding two isoforms of the subtype III alpha‐subunit. J Mol Neurosci 1998; 10: 67–70
  • Drews V. L., Lieberman A. P., Meisler M. H. Multiple transcripts of sodium channel SCN8A (Na(V)1.6) with alternative 5′‐ and 3′‐untranslated regions and initial characterization of the SCN8A promoter. Genomics 2005; 85: 245–57
  • Auld V. J., Goldin A. L., Krafte D. S., Catterall W. A., Lester H. A., Davidson N., et al. A neutral amino acid change in segment IIS4 dramatically alters the gating properties of the voltage‐dependent sodium channel. Proc Natl Acad Sci U S A 1990; 87: 323–7
  • Tan J., Liu Z., Nomura Y., Goldin A. L., Dong K. Alternative splicing of an insect sodium channel gene generates pharmacologically distinct sodium channels. J Neurosci 2002; 22: 5300–9
  • Makita N., Bennett P. B., Jr., George A. L., Jr. Voltage‐gated Na+ channel beta 1 subunit mRNA expressed in adult human skeletal muscle, heart, and brain is encoded by a single gene. J Biol Chem 1994; 269: 7571–8
  • Isom L. L., Ragsdale D. S., De Jongh K. S., Westenbroek R. E., Reber B. F., Scheuer T., et al. Structure and function of the beta 2 subunit of brain sodium channels, a transmembrane glycoprotein with a CAM motif. Cell 1995; 83: 433–42
  • Morgan K., Stevens E. B., Shah B., Cox P. J., Dixon A. K., Lee K., et al. beta 3: an additional auxiliary subunit of the voltage‐sensitive sodium channel that modulates channel gating with distinct kinetics. Proc Natl Acad Sci U S A 2000; 97: 2308–13
  • Dhar M. J., Chen C., Rivolta I., Abriel H., Malhotra R., Mattei L. N., et al. Characterization of sodium channel alpha‐ and beta‐subunits in rat and mouse cardiac myocytes. Circulation 2001; 103: 1303–10
  • Fahmi A. I., Patel M., Stevens E. B., Fowden A. L., John J. E., III., Lee K., et al. The sodium channel beta‐subunit SCN3b modulates the kinetics of SCN5a and is expressed heterogeneously in sheep heart. J Physiol 2001; 537: 693–700
  • Isom L. L., De Jongh K. S., Patton D. E., Reber B. F., Offord J., Charbonneau H., et al. Primary structure and functional expression of the beta 1 subunit of the rat brain sodium channel. Science 1992; 256: 839–42
  • Yu F. H., Westenbroek R. E., Silos‐Santiago I., McCormick K. A., Lawson D., Ge P., et al. Sodium channel beta4, a new disulfide‐linked auxiliary subunit with similarity to beta2. J Neurosci 2003; 23: 7577–85
  • Kazen‐Gillespie K. A., Ragsdale D. S., D'Andrea M. R., Mattei L. N., Rogers K. E., Isom L. L. Cloning, localization, and functional expression of sodium channel beta1A subunits. J Biol Chem 2000; 275: 1079–88
  • Qin N., D'Andrea M. R., Lubin M. L., Shafaee N., Codd E. E., Correa A. M. Molecular cloning and functional expression of the human sodium channel beta1B subunit, a novel splicing variant of the beta1 subunit. Eur J Biochem 2003; 270: 4762–70
  • Catterall W. A. From ionic currents to molecular mechanisms: the structure and function of voltage‐gated sodium channels. Neuron 2000; 26: 13–25
  • Backx P. H., Yue D. T., Lawrence J. H., Marban E., Tomaselli G. F. Molecular localization of an ion‐binding site within the pore of mammalian sodium channels. Science 1992; 257: 248–51
  • Heinemann S. H., Terlau H., Stuhmer W., Imoto K., Numa S. Calcium channel characteristics conferred on the sodium channel by single mutations. Nature 1992; 356: 441–3
  • Perez‐Garcia M. T., Chiamvimonvat N., Ranjan R., Balser J. R., Tomaselli G. F., Marban E. Mechanisms of sodium/calcium selectivity in sodium channels probed by cysteine mutagenesis and sulfhydryl modification. Biophys J 1997; 72: 989–96
  • Yang N., Horn R. Evidence for voltage‐dependent S4 movement in sodium channels. Neuron 1995; 15: 213–8
  • Eaholtz G., Zagotta W. N., Catterall W. A. Kinetic analysis of block of open sodium channels by a peptide containing the isoleucine, phenylalanine, and methionine (IFM) motif from the inactivation gate. J Gen Physiol 1998; 111: 75–82
  • West J. W., Patton D. E., Scheuer T., Wang Y., Goldin A. L., Catterall W. A. A cluster of hydrophobic amino acid residues required for fast Na(+)‐channel inactivation. Proc Natl Acad Sci U S A 1992; 89: 10910–4
  • Motoike H. K., Liu H., Glaaser I. W., Yang A. S., Tateyama M., Kass R. S. The Na+ channel inactivation gate is a molecular complex: a novel role of the COOH‐terminal domain. J Gen Physiol 2004; 123: 155–65
  • Isom L. L., Catterall W. A. Na+ channel subunits and Ig domains. Nature 1996; 383: 307–8
  • Goldin A. L. Accessory subunits and sodium channel inactivation. Curr Opin Neurobiol 1993; 3: 272–7
  • Isom L. L. I. Cellular and molecular biology of sodium channel beta‐subunits: therapeutic implications for pain?. Am J Physiol Gastrointest Liver Physiol 2000; 278: G349–G353
  • Isom L. L. Sodium channel beta subunits: anything but auxiliary. Neuroscientist 2001; 7: 42–54
  • Tan H. L., Bezzina C. R., Smits J. P., Verkerk A. O., Wilde A. A. Genetic control of sodium channel function. Cardiovasc Res 2003; 57: 961–73
  • Chen Q., Kirsch G. E., Zhang D., Brugada R., Brugada J., Brugada P., et al. Genetic basis and molecular mechanism for idiopathic ventricular fibrillation. Nature 1998; 392: 293–6
  • Schott J. J., Alshinawi C., Kyndt F., Probst V., Hoorntje T. M., Hulsbeek M., et al. Cardiac conduction defects associate with mutations in SCN5A. Nat Genet 1999; 23: 20–1
  • Benson D. W., Wang D. W., Dyment M., Knilans T. K., Fish F. A., Strieper M. J., et al. Congenital sick sinus syndrome caused by recessive mutations in the cardiac sodium channel gene (SCN5A). J Clin Invest 2003; 112: 1019–28
  • Ackerman M. J., Siu B. L., Sturner W. Q., Tester D. J., Valdivia C. R., Makielski J. C., et al. Postmortem molecular analysis of SCN5A defects in sudden infant death syndrome. JAMA 2001; 286: 2264–9
  • McNair W. P., Ku L., Taylor M. R., Fain P. R., Dao D., Wolfel E., et al. SCN5A mutation associated with dilated cardiomyopathy, conduction disorder, and arrhythmia. Circulation 2004; 110: 2163–7
  • Groenewegen W. A., Firouzi M., Bezzina C. R., Vliex S., van L., I., Sandkuijl L., et al. A cardiac sodium channel mutation cosegregates with a rare connexin40 genotype in familial atrial standstill. Circ Res 2003; 92: 14–22
  • Wang Q., Shen J., Li Z., Timothy K., Vincent G. M., Priori S. G., et al. Cardiac sodium channel mutations in patients with long QT syndrome, an inherited cardiac arrhythmia. Hum Mol Genet 1995; 4: 1603–7
  • Bezzina C. R., Rook M. B., Wilde A. A. Cardiac sodium channel and inherited arrhythmia syndromes. Cardiovasc Res 2001; 49: 257–71
  • Bezzina C., Veldkamp M. W., van den Berg M. P., Postma A. V., Rook M. B., Viersma J. W., et al. A single Na(+) channel mutation causing both long‐QT and Brugada syndromes. Circ Res 1999; 85: 1206–13
  • Antzelevitch C., Brugada P., Borggrefe M., Brugada J., Brugada R., Corrado D., et al. Brugada syndrome: report of the second consensus conference. Heart Rhythm 2005; 2: 429–40
  • Meregalli P. G., Wilde A. A., Tan H. L. Pathophysiological mechanisms of Brugada syndrome: depolarization disorder, repolarization disorder, or more?. Cardiovasc Res 2005; 67: 367–78
  • Probst V., Allouis M., Sacher F., Pattier S., Babuty D., Mabo P., et al. Progressive Cardiac Conduction Defect is the Prevailing Phenotype in Carriers of a Brugada Syndrome SCN5A Mutation. J Cardiovasc Electrophysiol 2006; 17: 270–5
  • Smits J. P., Eckardt L., Probst V., Bezzina C. R., Schott J. J., Remme C. A., et al. Genotype‐phenotype relationship in Brugada syndrome: electrocardiographic features differentiate SCN5A‐related patients from non‐SCN5A‐related patients. J Am Coll Cardiol 2002; 40: 350–6
  • Bezzina C. R., Shimizu W., Yang P., Koopmann T. T., Tanck M. W., Miyamoto Y., et al. Common sodium channel promoter haplotype in asian subjects underlies variability in cardiac conduction. Circulation 2006; 113: 338–44
  • Bennett P. B., Yazawa K., Makita N., George A. L., Jr. Molecular mechanism for an inherited cardiac arrhythmia. Nature 1995; 376: 683–5
  • Veldkamp M. W., Wilders R., Baartscheer A., Zegers J. G., Bezzina C. R., Wilde A. A. Contribution of sodium channel mutations to bradycardia and sinus node dysfunction in LQT3 families. Circ Res 2003; 92: 976–83
  • Domingo AM, Kaku T, Tester DJ, Torres PI, Itty A, Ye B, et al. Sodium Channel ß4 Subunit Mutation Causes Congenital Long QT Syndrome. Program no 16‐6 presented at the 27th Annual Scientific Sessions of the Heart Rhythm Society, 2006, May 18. Boston, MA, USA, http://www.heartrhythm2006.org/Heart_Rhythm_2006_Program.asp
  • Escayg A., MacDonald B. T., Meisler M. H., Baulac S., Huberfeld G., An‐Gourfinkel I., et al. Mutations of SCN1A, encoding a neuronal sodium channel, in two families with GEFS+2. Nat Genet 2000; 24: 343–5
  • Sugawara T., Mazaki‐Miyazaki E., Ito M., Nagafuji H., Fukuma G., Mitsudome A., et al. Nav1.1 mutations cause febrile seizures associated with afebrile partial seizures. Neurology 2001; 57: 703–5
  • Wallace R. H., Scheffer I. E., Barnett S., Richards M., Dibbens L., Desai R. R., et al. Neuronal sodium‐channel alpha1‐subunit mutations in generalized epilepsy with febrile seizures plus. Am J Hum Genet 2001; 68: 859–65
  • Nabbout R., Gennaro E., Dalla B. B., Dulac O., Madia F., Bertini E., et al. Spectrum of SCN1A mutations in severe myoclonic epilepsy of infancy. Neurology 2003; 60: 1961–7
  • Meisler M. H., Kearney J. A. Sodium channel mutations in epilepsy and other neurological disorders. J Clin Invest 2005; 115: 2010–7
  • Wallace R. H., Hodgson B. L., Grinton B. E., Gardiner R. M., Robinson R., Rodriguez‐Casero V., et al. Sodium channel alpha1‐subunit mutations in severe myoclonic epilepsy of infancy and infantile spasms. Neurology 2003; 61: 765–9
  • Kanai K., Hirose S., Oguni H., Fukuma G., Shirasaka Y., Miyajima T., et al. Effect of localization of missense mutations in SCN1A on epilepsy phenotype severity. Neurology 2004; 63: 329–34
  • Fujiwara T., Sugawara T., Mazaki‐Miyazaki E., Takahashi Y., Fukushima K., Watanabe M., et al. Mutations of sodium channel alpha subunit type 1 (SCN1A) in intractable childhood epilepsies with frequent generalized tonic‐clonic seizures. Brain 2003; 126: 531–46
  • Mantegazza M., Gambardella A., Rusconi R., Schiavon E., Annesi F., Cassulini R. R., et al. Identification of an Nav1.1 sodium channel (SCN1A) loss‐of‐function mutation associated with familial simple febrile seizures. Proc Natl Acad Sci U S A 2005; 102: 18177–82
  • Fukuma G., Oguni H., Shirasaka Y., Watanabe K., Miyajima T., Yasumoto S., et al. Mutations of neuronal voltage‐gated Na+ channel alpha 1 subunit gene SCN1A in core severe myoclonic epilepsy in infancy (SMEI) and in borderline SMEI (SMEB). Epilepsia 2004; 45: 140–8
  • Dichgans M., Freilinger T., Eckstein G., Babini E., Lorenz‐Depiereux B., Biskup S., et al. Mutation in the neuronal voltage‐gated sodium channel SCN1A in familial hemiplegic migraine. Lancet 2005; 366: 371–7
  • Weiss L. A., Escayg A., Kearney J. A., Trudeau M., MacDonald B. T., Mori M., et al. Sodium channels SCN1A, SCN2A and SCN3A in familial autism. Mol Psychiatry 2003; 8: 186–94
  • Kamiya K., Kaneda M., Sugawara T., Mazaki E., Okamura N., Montal M., et al. A nonsense mutation of the sodium channel gene SCN2A in a patient with intractable epilepsy and mental decline. J Neurosci 2004; 24: 2690–8
  • Sugawara T., Tsurubuchi Y., Agarwala K. L., Ito M., Fukuma G., Mazaki‐Miyazaki E., et al. A missense mutation of the Na+ channel alpha II subunit gene Na(v)1.2 in a patient with febrile and afebrile seizures causes channel dysfunction. Proc Natl Acad Sci U S A 2001; 98: 6384–9
  • Berkovic S. F., Heron S. E., Giordano L., Marini C., Guerrini R., Kaplan R. E., et al. Benign familial neonatal‐infantile seizures: characterization of a new sodium channelopathy. Ann Neurol 2004; 55: 550–7
  • Gastaldi M., Bartolomei F., Massacrier A., Planells R., Robaglia‐Schlupp A., Cau P. Increase in mRNAs encoding neonatal II and III sodium channel alpha‐isoforms during kainate‐induced seizures in adult rat hippocampus. Brain Res Mol Brain Res 1997; 44: 179–90
  • Whitaker W. R., Faull R. L., Dragunow M., Mee E. W., Emson P. C., Clare J. J. Changes in the mRNAs encoding voltage‐gated sodium channel types II and III in human epileptic hippocampus. Neuroscience 2001; 106: 275–85
  • Meisler M. H., Plummer N. W., Burgess D. L., Buchner D. A., Sprunger L. K. Allelic mutations of the sodium channel SCN8A reveal multiple cellular and physiological functions. Genetica 2004; 122: 37–45
  • Trudeau M. M., Dalton J. C., Day J. W., Ranum L. P., Meisler M. H. Heterozygosity for a protein truncation mutation of sodium channel SCN8A in a patient with cerebellar atrophy, ataxia and mental retardation. J Med Genet 2005; 43: 527–30
  • Wasserman D., Geijer T., Rozanov V., Wasserman J. Suicide attempt and basic mechanisms in neural conduction: relationships to the SCN8A and VAMP4 genes. Am J Med Genet B Neuropsychiatr Genet 2005; 133: 116–9
  • Wallace R. H., Wang D. W., Singh R., Scheffer I. E., George A. L., Jr., Phillips H. A., et al. Febrile seizures and generalized epilepsy associated with a mutation in the Na+‐channel beta1 subunit gene SCN1B. Nat Genet 1998; 19: 366–70
  • Wallace R. H., Scheffer I. E., Parasivam G., Barnett S., Wallace G. B., Sutherland G. R., et al. Generalized epilepsy with febrile seizures plus: mutation of the sodium channel subunit SCN1B. Neurology 2002; 58: 1426–9
  • Audenaert D., Claes L., Ceulemans B., Lofgren A., Van B. C., De J. P. A deletion in SCN1B is associated with febrile seizures and early‐onset absence epilepsy. Neurology 2003; 61: 854–6
  • Meadows L. S., Malhotra J., Loukas A., Thyagarajan V., Kazen‐Gillespie K. A., Koopman M. C., et al. Functional and biochemical analysis of a sodium channel beta1 subunit mutation responsible for generalized epilepsy with febrile seizures plus type 1. J Neurosci 2002; 22: 10699–709
  • Chen C., Westenbroek R. E., Xu X., Edwards C. A., Sorenson D. R., Chen Y., et al. Mice lacking sodium channel beta1 subunits display defects in neuronal excitability, sodium channel expression, and nodal architecture. J Neurosci 2004; 24: 4030–42
  • Yang Y., Wang Y., Li S., Xu Z., Li H., Ma L., et al. Mutations in SCN9A, encoding a sodium channel alpha subunit, in patients with primary erythermalgia. J Med Genet 2004; 41: 171–4
  • Cummins T. R., Dib‐Hajj S. D., Waxman S. G. Electrophysiological properties of mutant Nav1.7 sodium channels in a painful inherited neuropathy. J Neurosci 2004; 24: 8232–6
  • Dib‐Hajj S. D., Rush A. M., Cummins T. R., Hisama F. M., Novella S., Tyrrell L., et al. Gain‐of‐function mutation in Nav1.7 in familial erythromelalgia induces bursting of sensory neurons. Brain 2005; 128: 1847–54
  • Fertleman CR, Rees M, Parker KA, Barlow E, Gardiner RM. Identification of the gene underlying an inherited disorder of pain sensation. Program no 197 presented at the 54th Annual Meeting of the American Society of Human Genetics, 2004, October 30. Bethesda, MD, USA. http://www.ashg.org/genetics/ashg04s/index.shtml
  • Nassar M. A., Levato A., Stirling L. C., Wood J. N. Neuropathic pain develops normally in mice lacking both Nav1.7 and Nav1.8. Mol Pain 2005; 1: 24
  • Rabert D. K., Koch B. D., Ilnicka M., Obernolte R. A., Naylor S. L., Herman R. C., et al. A tetrodotoxin‐resistant voltage‐gated sodium channel from human dorsal root ganglia, hPN3/SCN10A. Pain 1998; 78: 107–14
  • Lai J., Gold M. S., Kim C. S., Bian D., Ossipov M. H., Hunter J. C., et al. Inhibition of neuropathic pain by decreased expression of the tetrodotoxin‐resistant sodium channel, NaV1.8. Pain 2002; 95: 143–52
  • Yoshimura N., Seki S., Novakovic S. D., Tzoumaka E., Erickson V. L., Erickson K. A., et al. The involvement of the tetrodotoxin‐resistant sodium channel Na(v)1.8 (PN3/SNS) in a rat model of visceral pain. J Neurosci 2001; 21: 8690–6
  • Dib‐Hajj S. D., Tyrrell L., Black J. A., Waxman S. G. NaN, a novel voltage‐gated Na channel, is expressed preferentially in peripheral sensory neurons and down‐regulated after axotomy. Proc Natl Acad Sci U S A 1998; 95: 8963–8
  • Tate S., Benn S., Hick C., Trezise D., John V., Mannion R. J., et al. Two sodium channels contribute to the TTX‐R sodium current in primary sensory neurons. Nat Neurosci 1998; 1: 653–5
  • Priest B. T., Murphy B. A., Lindia J. A., Diaz C., Abbadie C., Ritter A. M., et al. Contribution of the tetrodotoxin‐resistant voltage‐gated sodium channel NaV1.9 to sensory transmission and nociceptive behavior. Proc Natl Acad Sci U S A 2005; 102: 9382–7
  • Fontaine B., Khurana T. S., Hoffman E. P., Bruns G. A., Haines J. L., Trofatter J. A., et al. Hyperkalemic periodic paralysis and the adult muscle sodium channel alpha‐subunit gene. Science 1990; 250: 1000–2
  • Bulman D. E., Scoggan K. A., van Oene M. D., Nicolle M. W., Hahn A. F., Tollar L. L., et al. A novel sodium channel mutation in a family with hypokalemic periodic paralysis. Neurology 1999; 53: 1932–6
  • Ptacek L. J., Trimmer J. S., Agnew W. S., Roberts J. W., Petajan J. H., Leppert M. Paramyotonia congenita and hyperkalemic periodic paralysis map to the same sodium‐channel gene locus. Am J Hum Genet 1991; 49: 851–4
  • Ptacek L. J., Tawil R., Griggs R. C., Storvick D., Leppert M. Linkage of atypical myotonia congenita to a sodium channel locus. Neurology 1992; 42: 431–3
  • Chahine M., George A. L., Jr., Zhou M., Ji S., Sun W., Barchi R. L., et al. Sodium channel mutations in paramyotonia congenita uncouple inactivation from activation. Neuron 1994; 12: 281–94
  • Lerche H., Heine R., Pika U., George A. L., Jr., Mitrovic N., Browatzki M., et al. Human sodium channel myotonia: slowed channel inactivation due to substitutions for a glycine within the III‐IV linker. J Physiol 1993; 470: 13–22
  • Mitrovic N., George A. L., Jr., Lerche H., Wagner S., Fahlke C., Lehmann‐Horn F. Different effects on gating of three myotonia‐causing mutations in the inactivation gate of the human muscle sodium channel. J Physiol 1995; 487((Pt 1))107–14
  • Cannon S. C. Ion‐channel defects and aberrant excitability in myotonia and periodic paralysis. Trends Neurosci 1996; 19: 3–10
  • Cannon S. C., Strittmatter S. M. Functional expression of sodium channel mutations identified in families with periodic paralysis. Neuron 1993; 10: 317–26
  • Bendahhou S., Cummins T. R., Griggs R. C., Fu Y. H., Ptacek L. J. Sodium channel inactivation defects are associated with acetazolamide‐exacerbated hypokalemic periodic paralysis. Ann Neurol 2001; 50: 417–20
  • Jurkat‐Rott K., Mitrovic N., Hang C., Kouzmekine A., Iaizzo P., Herzog J., et al. Voltage‐sensor sodium channel mutations cause hypokalemic periodic paralysis type 2 by enhanced inactivation and reduced current. Proc Natl Acad Sci U S A 2000; 97: 9549–54
  • Kuzmenkin A., Muncan V., Jurkat‐Rott K., Hang C., Lerche H., Lehmann‐Horn F., et al. Enhanced inactivation and pH sensitivity of Na(+) channel mutations causing hypokalaemic periodic paralysis type II. Brain 2002; 125: 835–43
  • Priori S. G., Napolitano C., Gasparini M., Pappone C., Della B. P., Brignole M., et al. Clinical and genetic heterogeneity of right bundle branch block and ST‐segment elevation syndrome: A prospective evaluation of 52 families. Circulation 2000; 102: 2509–15
  • Lerche H., Weber Y. G., Baier H., Jurkat‐Rott K., Kraus de Camargo O., Ludolph A. C., et al. Generalized epilepsy with febrile seizures plus: further heterogeneity in a large family. Neurology 2001; 57: 1191–8
  • Buchner D. A., Trudeau M., Meisler M. H. SCNM1, a putative RNA splicing factor that modifies disease severity in mice. Science 2003; 301: 967–9
  • Kearney J. A., Yang Y., Beyer B., Bergren S. K., Claes L., Dejonghe P., et al. Severe epilepsy resulting from genetic interaction between Scn2a and Kcnq2. Hum Mol Genet 2006; 15: 1043–8
  • Bergren S. K., Chen S., Galecki A., Kearney J. A. Genetic modifiers affecting severity of epilepsy caused by mutation of sodium channel Scn2a. Mamm Genome 2005; 16: 683–90
  • Viswanathan P. C., Benson D. W., Balser J. R. A common SCN5A polymorphism modulates the biophysical effects of an SCN5A mutation. J Clin Invest 2003; 111: 341–6

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.