393
Views
11
CrossRef citations to date
0
Altmetric
TRENDS IN MOLECULAR MEDICINE

Interfering with leukocyte integrin activation—a novel concept in the development of anti‐inflammatory drugs

, , &
Pages 503-511 | Published online: 08 Jul 2009

References

  • Luster A. D., Alon R., von Andrian U. H. Immune cell migration in inflammation: present and future therapeutic targets. Nat Immunol 2005; 6: 1182–90
  • Gahmberg C. G. Leukocyte adhesion: CD11/CD18 integrins and intercellular adhesion molecules. Curr Opin Cell Biol 1997; 9: 643–50
  • Gahmberg C. G., Tolvanen M., Kotovuori P. Leukocyte adhesion—structure and function of human leukocyte β2‐integrins and their cellular ligands. Eur J Biochem 1997; 245: 215–32
  • Hynes R. O. Integrins: bidirectional, allosteric signalling machines. Cell 2002; 110: 673–87
  • van Kooyk Y., Figdor C. G. Avidity regulation of integrins: the driving force in leukocyte adhesion. Curr Opin Cell Biol 2000; 12: 542–7
  • Shimaoka M., Takagi J., Springer T. A. Conformational regulation of integrin structure and function. Annu Rev Biophys Biomol Struct 2002; 31: 485–516
  • Simmons D. L. Anti‐adhesion therapies. Curr Opin Pharmacol 2005; 5: 398–404
  • Worthylake R. A., Burridge K. Leukocyte transendothelial migration: orchestrating the underlying molecular machinery. Curr Opin Cell Biol 2001; 13: 569–77
  • McEver R. P. Selectins: lectins that initiate cell adhesion under flow. Curr Opin Cell Biol 2002; 14: 581–6
  • Andrew D. P., Spellberg J. P., Takimoto H., Schmits R., Mak T. W., Zukowski M. M. Transendothelial migration and trafficking of leukocytes in LFA‐1‐deficient mice. Eur J Immunol 1998; 28: 1959–69
  • Berlin‐Rufenach C., Otto F., Mathies M., Westermann J., Owen M. J., Hamann A., et al. Lymphocyte migration in lymphocyte function‐associated antigen (LFA)‐1‐deficient mice. J Exp Med 1999; 189: 1467–78
  • Engelhardt B., Wolburg H. Mini‐review: Transendothelial migration of leukocytes: through the front door or around the side of the house?. Eur J Immunol 2004; 34: 2955–63
  • Yonekawa K., Harlan J. M. Targeting leukocyte integrins in human diseases. J Leukoc Biol 2005; 77: 129–40
  • Altieri D. C., Edgington T. S. The saturable high affinity association of factor X to ADP‐stimulated monocytes defines a novel function of the Mac‐1 receptor. J Biol Chem 1988; 263: 7007–15
  • Wright S. D., Weitz J. I., Huang A. J., Levin S. M., Silverstein S. C., Loike J. D. Complement receptor type three (CD11b/CD18) of human polymorphonuclear leukocytes recognizes fibrinogen. Proc Natl Acad Sci U S A 1988; 85: 7734–8
  • Beller D. I., Springer T. A., Schreiber R. D. Anti‐Mac‐1 selectively inhibits the mouse and human type three complement receptor. J Exp Med 1982; 156: 1000–9
  • Butcher E. C., Williams M., Youngman K., Rott L., Briskin M. Lymphocyte trafficking and regional immunity. Adv Immunol 1999; 72: 209–53
  • Hogg N., Bates P. A. Genetic analysis of integrin function in man: LAD‐1 and other syndromes. Matrix Biol 2000; 19: 211–22
  • Kuijpers T. W., Van Lier R. A., Hamann D., de Boer M., Thung L. Y., Weening R. S., et al. Leukocyte adhesion deficiency type 1 (LAD‐1)/variant. A novel immunodeficiency syndrome characterized by dysfunctional β2 integrins. J Clin Invest 1997; 100: 1725–33
  • McDowall A., Inwald D., Leitinger B., Jones A., Liesner R., Klein N., et al. A novel form of integrin dysfunction involving β1, β2, and β3 integrins. J Clin Invest 2003; 111: 51–60
  • Scharffetter‐Kochanek K., Lu H., Norman K., van Nood N., Munoz F., Grabbe S., et al. Spontaneous skin ulceration and defective T cell function in CD18 null mice. J Exp Med 1998; 188: 119–31
  • Yang J. T., Rayburn H., Hynes R. O. Cell adhesion events mediated by α4 integrins are essential in placental and cardiac development. Development 1995; 121: 549–60
  • Xiong J. P., Stehle T., Diefenbach B., Zhang R., Dunker R., Scott D. L., et al. Crystal structure of the extracellular segment of integrin αVβ3. Science 2001; 294: 339–45
  • Michishita M., Videm V., Arnaout M. A. A novel divalent cation‐binding site in the A domain of the β2 integrin CR3 (CD11b/CD18) is essential for ligand binding. Cell 1993; 72: 857–67
  • Takagi J., Petre B. M., Walz T., Springer T. A. Global conformational rearrangements in integrin extracellular domains in outside‐in and inside‐out signalling. Cell 2002; 110: 599–11
  • Liddington R. C. Will the real integrin please stand up?. Structure 2002; 10: 605–7
  • Vinogradova O., Velyvis A., Velyviene A., Hu B., Haas T., Plow E., et al. A structural mechanism of integrin alpha(IIb)beta(3) ‘inside‐out’ activation as regulated by its cytoplasmic face. Cell 2002; 110: 587–97
  • Weljie A. M., Hwang P. M., Vogel H. J. Solution structures of the cytoplasmic tail complex from platelet integrin αIIb‐ and β3‐subunits. Proc Natl Acad Sci U S A 2002; 99: 5878–83
  • Vinogradova O., Vaynberg J., Kong X., Haas T. A., Plow E. F., Qin J. Membrane‐mediated structural transitions at the cytoplasmic face during integrin activation. Proc Natl Acad Sci U S A 2004; 101: 4094–9
  • Hogg N., Henderson R., Leitinger B., McDowall A., Porter J., Stanley P. Mechanisms contributing to the activity of integrins on leukocytes. Immunol Rev 2002; 186: 164–71
  • Liu S., Calderwood D. A., Ginsberg M. H. Integrin cytoplasmic domain‐binding proteins. J Cell Sci, 113: 3563–71
  • Calderwood D. A. Integrin activation. J Cell Sci 2004; 117: 657–66
  • Wiesner S., Legate K. R., Fassler R. Integrin‐actin interactions. Cell Mol Life Sci 2005; 62: 1081–99
  • Horwitz A., Duggan K., Buck C., Beckerle M. C., Burridge K. Interaction of plasma membrane fibronectin receptor with talin—a transmembrane linkage. Nature 1986; 320: 531–3
  • Knezevic I., Leisner T. M., Lam S. C. Direct binding of the platelet integrin alphaIIbbeta3 (GPIIb‐IIIa) to talin. Evidence that interaction is mediated through the cytoplasmic domains of both alphaIIb and beta3. J Biol Chem 1996; 271: 16416–21
  • Sampath R., Gallagher P. J., Pavalko F. M. Cytoskeletal interactions with the leukocyte integrin beta2 cytoplasmic tail. Activation‐dependent regulation of associations with talin and alpha‐actinin. J Biol Chem 1998; 273: 33588–94
  • Kim M., Carman C. V., Springer T. A. Bidirectional transmembrane signaling by cytoplasmic domain separation in integrins. Science 2003; 301: 1720–5
  • Smith A., Carrasco Y. R., Stanley P., Kieffer N., Batista F. D., Hogg N. A talin‐dependent LFA‐1 focal zone is formed by rapidly migrating T lymphocytes. J Cell Biol 2005; 170: 141–51
  • Stossel T. P., Condeelis J., Cooley L., Hartwig J. H., Noegel A., Schleicher M., et al. Filamins as integrators of cell mechanics and signalling. Nat Rev Mol Cell Biol 2001; 2: 138–45
  • Calderwood D. A., Huttenlocher A., Kiosses W. B., Rose D. M., Woodside D. G., Schwartz M. A., et al. Increased filamin binding to beta‐integrin cytoplasmic domains inhibits cell migration. Nat Cell Biol 2001; 3: 1060–8
  • Kiema T., Lad Y., Jiang P., Oxley C. L., Baldassarre M., Wegener K. L., et al. The molecular basis of filamin binding to integrins and competition with talin. Mol Cell 2006; 21: 337–47
  • Fagerholm S. C., Hilden T. J., Nurmi S. M., Gahmberg C. G. Specific integrin α and β chain phosphorylations regulate LFA‐1 activation through affinity‐dependent and ‐independent mechanisms. J Cell Biol 2005; 171: 705–15
  • Han D. C., Rodriguez L. G., Guan J. L. Identification of a novel interaction between integrin beta1 and 14‐3‐3beta. Oncogene 2001; 20: 346–57
  • Katagiri K., Maeda A., Shimonaka M., Kinashi T. RAPL, a Rap1‐binding molecule that mediates Rap1‐induced adhesion through spatial regulation of LFA‐1. Nat Immunol 2003; 4: 741–8
  • Reedquist K. A., Ross E., Koop E. A., Wolthuis R. M., Zwartkruis F. J., van Kooyk Y., et al. The small GTPase, Rap1, mediates CD31‐induced integrin adhesion. J Cell Biol 2000; 148: 1151–8
  • Caron E., Self A. J., Hall A. The GTPase Rap1 controls functional activation of macrophage integrin alphaMbeta2 by LPS and other inflammatory mediators. Curr Biol 2000; 10: 974–8
  • Katagiri K., Ohnishi N., Kabashima K., Iyoda T., Takeda N., Shinkai Y., et al. Crucial functions of the Rap1 effector molecule RAPL in lymphocyte and dendritic cell trafficking. Nat Immunol 2004; 5: 1045–51
  • Fagerholm S., Hilden T. J., Gahmberg C. G. P marks the spot—site‐specific integrin phosphorylation regulates molecular interactions. Trends Biochem Sci 2004; 29: 504–12
  • Valmu L., Gahmberg C. G. Treatment with okadaic acid reveals strong threonine phosphorylation of CD18 after activation of CD11/CD18 leukocyte integrins with phorbol esters or CD3 antibodies. J Immunol 1995; 155: 1175–83
  • Hilden T. J., Valmu L., Karkkainen S., Gahmberg C. G. Threonine phosphorylation sites in the beta2 and beta7 leukocyte integrin polypeptides. J Immunol 2003; 170: 4170–7
  • Wiedemann A., Patel J. C., Lim J., Tsun A., van Kooyk Y., Caron E. Two distinct cytoplasmic regions of the beta2 integrin chain regulate RhoA function during phagocytosis. J Cell Biol 2006; 172: 1069–79
  • Nishiya N., Kiosses W. B., Han J., Ginsberg M. H. An alpha4 integrin‐paxillin‐Arf‐GAP complex restricts Rac activation to the leading edge of migrating cells. Nat Cell Biol 2005; 7: 343–52
  • Alon R., Feigelson S. W., Manevich E., Rose D. M., Schmitz J., Overby D. R., et al. α4β1‐dependent adhesion strengthening under mechanical strain is regulated by paxillin association with the α4‐cytoplasmic domain. J Cell Biol 2005; 171: 1073–84
  • Vedder N. B., Winn R. K., Rice C. L., Chi E. Y., Arfors K. E., Harlan J. M. A monoclonal antibody to the adherence‐promoting leukocyte glycoprotein, CD18, reduces organ injury and improves survival from hemorrhagic shock and resuscitation in rabbits. J Clin Invest 1988; 81: 939–44
  • Hutchings P., Rosen H., O'Reilly L., Simpson E., Gordon S., Cooke A. Transfer of diabetes in mice prevented by blockade of adhesion‐promoting receptor on macrophages. Nature 1990; 348: 639–42
  • Taylor P. C., Chu C. Q., Plater‐Zyberk C., Maini R. N. Transfer of type II collagen‐induced arthritis from DBA/1 to severe combined immunodeficiency mice can be prevented by blockade of Mac‐1. Immunology 1996; 88: 315–21
  • de Fougerolles A. R., Sprague A. G., Nickerson‐Nutter C. L., Chi‐Rosso G., Rennert P. D., Gardner H., et al. Regulation of inflammation by collagen‐binding integrins alpha1beta1 and alpha2beta1 in models of hypersensitivity and arthritis. J Clin Invest 2000; 105: 721–9
  • Cornejo C. J., Winn R. K., Harlan J. M. Anti‐adhesion therapy. Adv Pharmacol 1997; 39: 99–142
  • Poston R. S., Robbins R. C., Chan B., Simms P., Presta L., Jardieu P., et al. Effects of humanized monoclonal antibody to rhesus CD11a in rhesus monkey cardiac allograft recipients. Transplantation 2000; 69: 2005–13
  • Nicolls M. R., Coulombe M., Beilke J., Gelhaus H. C., Gill R. G. CD4‐dependent generation of dominant transplantation tolerance induced by simultaneous perturbation of CD154 and LFA‐1 pathways. J Immunol 2002; 169: 4831–9
  • Lebwohl M., Tyring S. K., Hamilton T. K., Toth D., Glazer S., Tawfik N. H., et al. A novel targeted T‐cell modulator, efalizumab, for plaque psoriasis. N Engl J Med 2003; 349: 2004–13
  • Langer‐Gould A., Atlas S. W., Green A. J., Bollen A. W., Pelletier D. Progressive multifocal leukoencephalopathy in a patient treated with natalizumab. N Engl J Med 2005; 353: 375–81
  • Kleinschmidt‐DeMasters B. K., Tyler K. L. Progressive multifocal leukoencephalopathy complicating treatment with natalizumab and interferon β‐1a for multiple sclerosis. N Engl J Med 2005; 353: 369–74
  • Van Assche G., Van Ranst M., Sciot R., Dubois B., Vermeire S., Noman M., et al. Progressive multifocal leukoencephalopathy after natalizumab therapy for Crohn's disease. N Engl J Med 2005; 353: 362–8
  • Jin J., Smith F. D., Stark C., Wells C. D., Fawcett J. P., Kulkarni S., et al. Proteomic, functional, and domain‐based analysis of in vivo 14‐3‐3 binding proteins involved in cytoskeletal regulation and cellular organization. Curr Biol 2004; 14: 1436–50
  • Kinashi T., Katagiri K. Regulation of immune cell adhesion and migration by regulator of adhesion and cell polarization enriched in lymphoid tissues. Immunology 2005; 116: 164–71
  • Fagerholm SC., Varis M., Stefanidakis M., Hilden T. J., Gahmberg C. G. α‐chain phosphorylation of the human leukocyte CD11b/CD18 (Mac‐1) integrin is pivotal for integrin activation to bind ICAMs and leukocyte extravasation in vivo. Blood e‐pub. DOI 10.1182/blood‐2006‐03‐013557
  • Han J., Liu S., Rose D. M., Schlaepfer D. D., McDonald H., Ginsberg M. H. Phosphorylation of the integrin alpha 4 cytoplasmic domain regulates paxillin binding. J Biol Chem 2001; 276: 40903–9
  • Feral C. C., Rose D. M., Han J., Fox N., Silverman G. J., Kaushansky K., et al. Blocking the alpha 4 integrin‐paxillin interaction selectively impairs mononuclear leukocyte recruitment to an inflammatory site. J Clin Invest 2006; 116: 715–23
  • Stefanidakis M., Björklund M., Ihanus E., Gahmberg C. G., Koivunen E. Identification of a negatively charged peptide motif within the catalytic domain of progelatinases that mediates binding to leukocyte β2 integrins. J Biol Chem 2003; 278: 34674–84
  • Stefanidakis M., Ruohtula T., Borregaard N., Gahmberg C. G., Koivunen E. Intercellular and cell‐surface localization of a complex between αMβ2 integrin and proMMP‐9 progelatinase in neutrophils. J Immunol 2004; 172: 7060–8
  • Stefanidakis M., Koivunen E. Cell‐surface association between matrix metalloproteinases: Role of the complexes in leukocyte migration and cancer progression. Blood 2006; 108: 1441–50

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.