374
Views
13
CrossRef citations to date
0
Altmetric
TRENDS IN CLINICAL PRACTICE

Monitoring of minimal residual disease in leukemia, advantages and pitfalls

, , &
Pages 512-521 | Published online: 08 Jul 2009

References

  • Szczepanski T., Orfao A., van der Velden V. H., San Miguel J. F., van Dongen J. J. Minimal residual disease in leukaemia patients. Lancet Oncol 2001; 2: 409–17
  • Campana D. Determination of minimal residual disease in leukaemia patients. Br J Haematol 2003; 121: 823–38
  • Cazzaniga G., Biondi A. Molecular monitoring of childhood acute lymphoblastic leukemia using antigen receptor gene rearrangements and quantitative polymerase chain reaction technology. Haematologica 2005; 90: 382–90
  • San‐Miguel J. F., Vidriales M. B., Orfao A. Immunological evaluation of minimal residual disease (MRD) in acute myeloid leukaemia (AML). Best Pract Res Clin Haematol 2002; 15: 105–18
  • Campana D. Minimal residual disease studies in acute leukemia. Am J Clin Pathol 2004; 122(Suppl)S47–57
  • Grimwade D., Lo Coco F. Acute promyelocytic leukemia: a model for the role of molecular diagnosis and residual disease monitoring in directing treatment approach in acute myeloid leukemia. Leukemia 2002; 16: 1959–73
  • Goldman J. Monitoring minimal residual disease in BCR‐ABL‐positive chronic myeloid leukemia in the imatinib era. Curr Opin Hematol 2005; 12: 33–9
  • Armstrong S. A., Look A. T. Molecular genetics of acute lymphoblastic leukemia. J Clin Oncol 2005; 23: 6306–15
  • Frohling S., Scholl C., Gilliland D. G., Levine R. L. Genetics of myeloid malignancies: pathogenetic and clinical implications. J Clin Oncol 2005; 23: 6285–95
  • van Dongen J. J., Macintyre E. A., Gabert J. A., Delabesse E., Rossi V., Saglio G., et al. Standardized RT‐PCR analysis of fusion gene transcripts from chromosome aberrations in acute leukemia for detection of minimal residual disease. Report of the BIOMED‐1 Concerted Action: investigation of minimal residual disease in acute leukemia. Leukemia 1999; 13: 1901–28
  • Pongers‐Willemse M. J., Seriu T., Stolz F., d'Aniello E., Gameiro P., Pisa P., et al. Primers and protocols for standardized detection of minimal residual disease in acute lymphoblastic leukemia using immunoglobulin and T cell receptor gene rearrangements and TAL1 deletions as PCR targets. Leukemia 1999; 13: 110–18
  • van Dongen J. J., Langerak A. W., Bruggemann M., Evans P. A., Hummel M., Lavender F. L., et al. Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T‐cell receptor gene recombinations in suspect lymphoproliferations: report of the BIOMED‐2 Concerted Action BMH4‐CT98‐3936. Leukemia 2003; 17: 2257–317
  • Rosenfeld C., Cheever M. A., Gaiger A. WT1 in acute leukemia, chronic myelogenous leukemia and myelodysplastic syndrome: therapeutic potential of WT1 targeted therapies. Leukemia 2003; 17: 1301–12
  • Cilloni D., Gottardi E., Messa F., Fava M., Scaravaglio P., Bertini M., et al. Piedmont Study Group on Myleodysplastic Syndromes. Significant correlation between the degree of WT1 expression and the International Prognostic Scoring System Score in patients with myelodysplastic syndromes. J Clin Oncol 2003; 21: 1988–95
  • Cazzaniga G., d'Aniello E., Corral L., Biondi A. Results of minimal residual disease (MRD) evaluation and MRD‐based treatment stratification in childhood ALL. Best Pract Res Clin Haematol 2002; 15: 623–38
  • Gokbuget N., Kneba M., Raff T. Risk‐adapted treatment according to minimal residual disease in adult ALL. Best Pract Res Clin Haematol 2002; 15: 639–52
  • van der Velden V. H., Hochhaus A., Cazzaniga G., Szczepanski T., Gabert J., van Dongen J. J. Detection of minimal residual disease in hematologic malignancies by real‐time quantitative PCR: principles, approaches, and laboratory aspects. Leukemia 2003; 17: 1013–34
  • Gabert J., Beillard E., van der Velden V. H., Bi W., Grimwade D., Pallisgaard N., et al. Standardization and quality control studies of ‘real‐time’ quantitative reverse transcriptase polymerase chain reaction of fusion gene transcripts for residual disease detection in leukemia—A Europe Against Cancer Program. Leukemia 2003; 17: 2318–57
  • Beillard E., Pallisgaard N., van der Velden V. H., Bi W., Dee R., van der Schoot E., et al. Evaluation of candidate control genes for diagnosis and residual disease detection in leukemic patients using ‘real‐time’ quantitative reverse‐transcriptase polymerase chain reaction (RQ‐PCR)—a Europe against cancer program. Leukemia 2003; 17: 2474–86
  • van Dongen J. J., Seriu T., Panzer‐Grumayer E. R., Biondi A., Pongers‐Willemse M. J., Corral L., et al. Prognostic value of minimal residual disease in acute lymphoblastic leukaemia in childhood. Lancet 1998; 352: 1731–38
  • Cave H., van der Werff ten Bosch J., Suciu S., Guidal C., Waterkeyn C., Otten J., et al. Clinical significance of minimal residual disease in childhood acute lymphoblastic leukemia. N Engl J Med 1998; 339: 591–98
  • Jacquy C., Delepaut B., Van Daele S., Vaerman J. L., Zenebergh A., Brichard B., et al. A prospective study of minimal residual disease in childhood B‐lineage acute lymphoblastic leukaemia: MRD level at the end of induction is a strong predictive factor of relapse. Br J Haematol 1997; 98: 140–6
  • Gruhn B., Hongeng S., Yi H., Hancock M. L., Rubnitz J. E., Neale G. A., et al. Minimal residual disease after intensive induction therapy in childhood acute lymphoblastic leukemia predicts outcome. Leukemia 1998; 12: 675–81
  • Foroni L., Harrison C. J., Hoffbrand A. V., Potter M. N. Investigation of minimal residual disease in childhood and adult acute lymphoblastic leukaemia by molecular analysis. Br J Haematol 1999; 105: 7–24
  • Coustan‐Smith E., Behm F. G., Sanchez J., Boyett J. M., Hancock M. L., Raimondi S. C., et al. Immunological detection of minimal residual disease in children with acute lymphoblastic leukaemia. Lancet 1998; 351: 550–4
  • Coustan‐Smith E., Sancho J., Hancock M. L., Boyett J. M., Behm F. G., Raimondi S. C., et al. Clinical importance of minimal residual disease in childhood acute lymphoblastic leukemia. Blood 2000; 96: 2691–6
  • Coustan‐Smith E., Sancho J., Hancock M. L., Razzouk B. I., Ribeiro R. C., Rivera G. K., et al. Use of peripheral blood instead of bone marrow to monitor residual disease in children with acute lymphoblastic leukemia. Blood 2002; 100: 2399–402
  • Dworzak M. N., Froschl G., Printz D., Mann G., Potschger U., Muhlegger N., et al. Austrian Berlin‐Frankfurt‐Munster Study Group. Prognostic significance and modalities of flow cytometric minimal residual disease detection in childhood acute lymphoblastic leukemia. Blood 2002; 99: 1952–8
  • Pott C., Schrader C., Gesk S., Harder L., Tiemann M., Raff T., et al. Clinical significance of minimal residual disease quantification in adult patients with standard‐risk acute lymphoblastic leukemia. Blood 2006; 107: 1116–23
  • Minucci S., Cioce M., Maccarana M., Pelicci P. G. The APL‐associated fusion proteins. Haematologica 1999; 84(Suppl EHA‐4)70–1
  • Mistry A. R., Pedersen E. W., Solomon E., Grimwade D. The molecular pathogenesis of acute promyelocytic leukaemia: implications for the clinical management of the disease. Blood Rev 2003; 17: 71–97
  • Lo Coco F., Diverio D., Pandolfi P. P., Biondi A., Rossi V., Avvisati G., et al. Molecular evaluation of residual disease as a predictor of relapse in acute promyelocytic leukaemia. Lancet 1992; 340: 1437–8
  • Lo Coco F., Diverio D., Falini B., Biondi A., Nervi C., Pelicci P. G. Genetic diagnosis and molecular monitoring in the management of acute promyelocytic leukemia. Blood 1999; 94: 12–22
  • Testi A. M., Biondi A., Lo Coco F., Moleti M. L., Giona F., Vignetti M., et al. GIMEMA‐AIEOPAIDA protocol for the treatment of newly diagnosed acute promyelocytic leukemia (APL) in children. Blood 2005; 106: 447–53
  • Lo Coco F., Diverio D., Avvisati G., Petti M. C., Meloni G., Pogliani E. M., et al. Therapy of molecular relapse in acute promyelocytic leukemia. Blood 1999; 94: 2225–9
  • Burnett A. K., Grimwade D., Solomon E., Wheatley K., Goldstone A. H. Presenting white blood cell count and kinetics of molecular remission predict prognosis in acute promyelocytic leukemia treated with all‐trans retinoic acid: result of the Randomized MRC Trial. Blood 1999; 93: 4131–43
  • Cassinat B., Zassadowski F., Balitrand N., Barbey C., Rain J. D., Fenaux P., et al. Quantitation of minimal residual disease in acute promyelocytic leukemia patients with t(15;17) translocation using real‐time RT‐PCR. Leukemia 2000; 14: 324–8
  • Gallagher R. E., Yeap B. Y., Bi W., Livak K. J., Beaubier N., Rao S., et al. Quantitative real‐time RT‐PCR analysis of PML‐RAR alpha mRNA in acute promyelocytic leukemia: assessment of prognostic significance in adult patients from intergroup protocol 0129. Blood 2003; 101: 2521–8
  • Deininger M. W., Goldman J. M., Melo J. V. The molecular biology of chronic myeloid leukemia. Blood 2000; 96: 3343–56
  • Druker B. J., Tamura S., Buchdunger E., Ohno S., Segal G. M., Fanning S., et al. Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr‐Abl positive cells. Nat Med 1996; 2: 561–6
  • Druker B. J., Sawyers C. L., Kantarjian H., Resta D. J., Reese S. F., Ford J. M., et al. Activity of a specific inhibitor of the BCR‐ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome. N Engl J Med 2001; 344: 1038–42
  • Marin D., Marktel S., Szydlo R., Klein J. P., Bua M., Foot N., et al. Survival of patients with chronic‐phase chronic myeloid leukaemia on imatinib after failure on interferon alfa. Lancet 2003; 362: 617–9
  • O'Brien S. G., Guilhot F., Larson R. A., Gathmann I., Baccarani M., Cervantes F., et al. IRIS Investigators. Imatinib compared with interferon and low‐dose cytarabine for newly diagnosed chronic‐phase chronic myeloid leukemia. N Engl J Med 2003; 348: 994–1004
  • Hughes T. P., Kaeda J., Branford S., Rudzki Z., Hochhaus A., Hensley M. L., et al. ; International Randomised Study of Interferon versus STI571 (IRIS) Study Group. Frequency of major molecular responses to imatinib or interferon alfa plus cytarabine in newly diagnosed chronic myeloid leukemia. N Engl J Med 2003; 349: 1423–32
  • Graham S. M., Jorgensen H. G., Allan E., Pearson C., Alcorn M. J., Richmond L., et al. Primitive, quiescent, Philadelphia‐positive stem cells from patients with chronic myeloid leukemia are insensitive to STI571 in vitro. Blood 2002; 99: 319–25
  • Gorre M. E., Sawyers C. L. Molecular mechanisms of resistance to STI571 in chronic myeloid leukemia. Curr Opin Hematol 2002; 9: 303–7
  • Talpaz M., Shah N. P., Kantarjian H., Donato N., Nicoll J., Paquette R., et al. Dasatinib in imatinib‐resistant Philadelphia chromosome‐positive leukemias. N Engl J Med 2006; 354: 2531–41
  • Kantarjian H., Giles F., Wunderle L., Bhalla K., O'Brien S., Wassmann B., et al. Nilotinib in imatinib‐resistant CML and Philadelphia chromosome‐positive ALL. N Engl J Med 2006; 354: 2542–51
  • Hughes T., Deininger M., Hochhaus A., Branford S., Radich J., Kaeda J., et al. Monitoring CML patients responding to treatment with tyrosine kinase inhibitors: review and recommendations for harmonizing current methodology for detecting BCR‐ABL transcripts and kinase domain mutations and for expressing results. Blood 2006; 108: 28–37

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.