2,287
Views
17
CrossRef citations to date
0
Altmetric
Trends in Molecular Medicine

Understanding the molecular basis of celiac disease: What genetic studies reveal

&
Pages 578-591 | Published online: 08 Jul 2009

References

  • Rewers M. Epidemiology of celiac disease: what are the prevalence, incidence, and progression of celiac disease?. Gastroenterology 2005; 128((Suppl 1))S47–51
  • Dewar D. H., Ciclitira P. J. Clinical features and diagnosis of celiac disease. Gastroenterology 2005; 128: S19–S24
  • Rampertab S. D., Pooran N., Brar P., Singh P., Green P. H. Trends in the presentation of celiac disease. Am J Med 2006; 119: 355.e9–14
  • Wahab P. J., Meijer J. W., Mulder C. J. Histologic follow‐up of people with celiac disease on a gluten‐free diet: slow and incomplete recovery. Am J Clin Pathol 2002; 118: 459–63
  • Schulzke J. D., Bentzel C. J., Schulzke I., Riecken E. O., Fromm M. Epithelial tight junction structure in the jejunum of children with acute and treated celiac sprue. Pediatr Res 1998; 43((Pt 1))435–41
  • Schulzke J. D., Schulzke I., Fromm M., Riecken E. O. Epithelial barrier and ion transport in coeliac sprue: electrical measurements on intestinal aspiration biopsy specimens. Gut 1995; 37: 777–82
  • Uil J. J., van Elburg R. M., van Overbeek F. M., Meyer J. W., Mulder C. J., Heymans H. S. Follow‐up of treated coeliac patients: sugar absorption test and intestinal biopsies compared. Eur J Gastroenterol Hepatol 1996; 8: 219–23
  • Smecuol E., Sugai E., Niveloni S., Vazquez H., Pedreira S., Mazure R., et al. Permeability, zonulin production, and enteropathy in dermatitis herpetiformis. Clin Gastroenterol Hepatol 2005; 3: 335–41
  • Zone J. J. Skin manifestations of celiac disease. Gastroenterology 2005; 128((Suppl 1))S87–91
  • Daum S., Cellier C., Mulder C. J. J. Refractory coeliac disease. Best Pract Res Clin Gastroenterol 2005; 19: 413–24
  • Green P. H., Jabri B. Celiac disease. Annu Rev Med 2006; 57: 207–21
  • Schuppan D., Dieterich W., Ehnis T., Bauer M., Donner P., Volta U., et al. Identification of the Autoantigen of Celiac Disease. Ann NY Acad Sci 1998; 859: 121–6
  • Revised criteria for diagnosis of coeliac disease. Report of Working Group of European Society of Paediatric Gastroenterology and Nutrition. Arch Dis Child 1990; 65: 909–11
  • Marsh M. Gluten, major histocompatibility complex, and the small intestine. A molecular and immunobiologic approach to the spectrum of gluten sensitivity (‘celiac sprue’). Gastroenterology 1992; 102: 330–54
  • Rostami K., Kerckhaert J., Tiemessen R., von Blomberg B. M., Meijer J. W., Mulder C. J. Sensitivity of antiendomysium and antigliadin antibodies in untreated celiac disease: disappointing in clinical practice. Am J Gastroenterol 1999; 94: 888–94
  • Dube C., Rostom A., Sy R., Cranney A., Saloojee N., Garritty C., et al. The prevalence of celiac disease in average‐risk and at‐risk Western European populations: a systematic review. Gastroenterology 2005; 128((Suppl 1))S57–67
  • Fasano A., Berti I., Gerarduzzi T., Not T., Colletti R. B., Drago S., et al. Prevalence of Celiac Disease in At‐Risk and Not‐At‐Risk Groups in the United States: A Large Multicenter Study. Arch Intern Med 2003; 163: 286–92
  • Talley N. J., Valdovinos M., Petterson T. M., Carpenter H. A., Melton L. J 3rd. Epidemiology of celiac sprue: a community‐based study. Am J Gastroenterol 1994; 89: 843–6
  • Greco L., Romino R., Coto I., Di Cosmo N., Percopo S., Maglio M., et al. The first large population based twin study of coeliac disease. Gut 2002; 50: 624–8
  • Nistico L., Fagnani C., Coto I., Percopo S., Cotichini R., Limongelli M. G., et al. Concordance, disease progression, and heritability of coeliac disease in Italian twins. Gut 2006; 55: 803–8
  • King A. L., Moodie S. J., Fraser J. S., Curtis D., Reid E., Dearlove A. M., et al. CTLA‐4/CD28 gene region is associated with genetic susceptibility to coeliac disease in UK families. J Med Genet 2002; 39: 51–4
  • Mora B., Bonamico M., Indovina P., Megiorni F., Ferri M., Carbone M. C., et al. CTLA‐4 +49 A/G dimorphism in Italian patients with celiac disease. Hum Immunol 2003; 64: 297–301
  • van Belzen M. J., Mulder C. J., Zhernakova A., Pearson P. L., Houwen R. H., Wijmenga C. CTLA4 +49 A/G and CT60 polymorphisms in Dutch coeliac disease patients. Eur J Hum Genet 2004; 12: 782–5
  • Clot F., Fulchignoni‐Lataud M. C., Renoux C., Percopo S., Bouguerra F., Babron M. C., et al. Linkage and association study of the CTLA‐4 region in coeliac disease for Italian and Tunisian populations. Tissue Antigens 1999; 54: 527–30
  • Djilali‐Saiah I., Schmitz J., Harfouch‐Hammoud E., Mougenot J. F., Bach J. F., Caillat‐Zucman S. CTLA‐4 gene polymorphism is associated with predisposition to coeliac disease. Gut 1998; 43: 187–9
  • Holopainen P., Naluai A. T., Moodie S., Percopo S., Coto I., Clot F., et al. Candidate gene region 2q33 in European families with coeliac disease. Tissue Antigens 2004; 63: 212–22
  • van Heel D. A., Hunt K., Greco L., Wijmenga C. Genetics in coeliac disease. Best Pract Res Clin Gastroenterol 2005; 19: 323–39
  • Falchuk Z. M., Rogentine G. N., Strober W. Predominance of histocompatibility antigen HL‐A8 in patients with gluten‐sensitive enteropathy. J Clin Invest 1972; 51: 1602–5
  • Falchuk Z. M., Strober W. HL‐A antigens and adult coeliac disease. Lancet 1972; 2: 1310
  • Stokes P. L., Asquith P., Holmes G. K., Mackintosh P., Cooke W. T. Histocompatibility antigens associated with adult coeliac disease. Lancet 1972; 2: 162–4
  • Corazza G. R., Tabacchi P., Frisoni M., Prati C., Gasbarrini G. DR and non‐DR Ia allotypes are associated with susceptibility to coeliac disease. Gut 1985; 26: 1210–3
  • Keuning J. J., Pena A. S., van Leeuwen A., van Hooff J. P., va Rood J. J. HLA‐DW3 associated with coeliac disease. Lancet 1976; 1: 506–8
  • Tosi R., Vismara D., Tanigaki N., Ferrara G. B., Cicimarra F., Buffolano W., et al. Evidence that celiac disease is primarily associated with a DC locus allelic specificity. Clin Immunol Immunopathol 1983; 28: 395–404
  • Kagnoff M. F., Harwood J. I., Bugawan T. L., Erlich H. A. Structural analysis of the HLA‐DR, ‐DQ, and ‐DP alleles on the celiac disease‐associated HLA‐DR3 (DRw17) haplotype. Proc Natl Acad Sci U S A 1989; 86: 6274–8
  • Rittner C., DeMarchi M., Mollenhauer E., Carbonara A. Coeliac disease and C4A*QO: an association secondary to HLA‐DR3. Tissue Antigens 1984; 23: 130–4
  • Sollid L. M., Markussen G., Ek J., Gjerde H., Vartdal F., Thorsby E. Evidence for a primary association of celiac disease to a particular HLA‐DQ alpha/beta heterodimer. J Exp Med 1989; 169: 345–50
  • Tosi R., Tanigaki N., Polanco I., De Marchi M., Woodrow J. C., Hetzel P. A. A radioimmunoassay typing study of non‐DQw2‐associated celiac disease. Clin Immunol Immunopathol 1986; 39: 168–72
  • Bevan S., Popat S., Braegger C. P., Busch A., O'Donoghue D., Falth‐Magnusson K., et al. Contribution of the MHC region to the familial risk of coeliac disease. J Med Genet 1999; 36: 687–90
  • Petronzelli F., Bonamico M., Ferrante P., Grillo R., Mora B., Mariani P., et al. Genetic contribution of the HLA region to the familial clustering of coeliac disease. Ann Hum Genet 1997; 61((Pt 4))307–17
  • Monsuur A. J., de Bakker P. I., Alizadeh B. Z., Zhernakova A., Bevova M. R., Strengman E., et al. Myosin IXB variant increases the risk of celiac disease and points toward a primary intestinal barrier defect. Nat Genet 2005; 37: 1341–4
  • Amundsen S. S., Monsuur A. J., Wapenaar M. C., Lie B. A., Ek J., Gudjonsdottir A. H., et al. Association Analysis of MYO9B Gene Polymorphisms with Celiac Disease in a Swedish/Norwegian Cohort. Hum Immunol 2006; 67: 341–5
  • Hunt K. A., Monsuur A. J., McArdle W., Kumar P. J., Travis S. P., Walters J. R., et al. Lack of association of MYO9B genetic variants with coeliac disease in a British cohort. Gut 2006; 55: 969–72
  • Ioannidis J. P., Ntzani E. E., Trikalinos T. A., Contopoulos‐Ioannidis D. G. Replication validity of genetic association studies. Nat Genet 2001; 29: 306–9
  • van Herpen T. W., Goryunova S. V., van der Schoot J., Mitreva M., Salentijn E., Vorst O., et al. Alpha‐gliadin genes from the A, B, and D genomes of wheat contain different sets of celiac disease epitopes. BMC Genomics 2006; 7: 1
  • Koning F., Gilissen L., Wijmenga C. Gluten: a two‐edged sword. Immunopathogenesis of celiac disease. Springer Semin Immunopathol 2005; 27: 217–32
  • Molberg O., Uhlen A. K., Jensen T., Flaete N. S., Fleckenstein B., Arentz‐Hansen H., et al. Mapping of gluten T‐cell epitopes in the bread wheat ancestors: implications for celiac disease. Gastroenterology 2005; 128: 393–401
  • Spaenij‐Dekking L., Kooy‐Winkelaar Y., van Veelen P., Drijfhout J. W., Jonker H., van Soest L., et al. Natural variation in toxicity of wheat: potential for selection of nontoxic varieties for celiac disease patients. Gastroenterology 2005; 129: 797–806
  • Spaenij‐Dekking L., Kooy‐Winkelaar Y., Koning F. The Ethiopian cereal tef in celiac disease. N Engl J Med 2005; 353: 1748–9
  • Hausch F., Shan L., Santiago N. A., Gray G. M., Khosla C. Intestinal digestive resistance of immunodominant gliadin peptides. Am J Physiol Gastrointest Liver Physiol 2002; 283: G996–G1003
  • Vanhoof G., Goossens F., Hendriks L., De Meester I., Hendriks D., Vriend G., et al. Cloning and sequence analysis of the gene encoding human lymphocyte prolyl endopeptidase. Gene 1994; 149: 363–6
  • Higaki‐Sato N., Sato K., Esumi Y., Okumura T., Yoshikawa H., Tanaka‐Kuwajima C., et al. Isolation and identification of indigestible pyroglutamyl peptides in an enzymatic hydrolysate of wheat gluten prepared on an industrial scale. J Agric Food Chem 2003; 51: 8–13
  • Shan L., Molberg O., Parrot I., Hausch F., Filiz F., Gray G. M., et al. Structural basis for gluten intolerance in celiac sprue. Science 2002; 297: 2275–9
  • Matysiak‐Budnik T., Candalh C., Dugave C., Namane A., Cellier C., Cerf‐Bensussan N., et al. Alterations of the intestinal transport and processing of gliadin peptides in celiac disease. Gastroenterology 2003; 125: 696–707
  • Diosdado B., Stepniak D. T., Monsuur A. J., Franke L., Wapenaar M. C., Mearin M. L., et al. No genetic association of the human prolyl endopeptidase gene in the Dutch celiac disease population. Am J Physiol Gastrointest Liver Physiol 2005; 289: G495–500
  • Monsuur A. J., Stepniak D., Diosdado B., Wapenaar M. C., Mearin M. L., Koning F., et al. Genetic and functional analysis of pyroglutamyl‐peptidase I in coeliac disease. Eur J Gastroenterol Hepatol 2006; 18: 637–44
  • Stepniak D., Spaenij‐Dekking L., Mitea C., Moester M., de Ru A., Baak‐Pablo R., et al. Highly efficient gluten degradation with a newly identified prolyl endoprotease: implications for celiac disease. Am J Physiol Gastrointest Liver Physiol 2006; 291: G621–9
  • Watson A. J., Chu S., Sieck L., Gerasimenko O., Bullen T., Campbell F., et al. Epithelial barrier function in vivo is sustained despite gaps in epithelial layers. Gastroenterology 2005; 129: 902–12
  • Ismail A. S., Hooper L. V. Epithelial cells and their neighbors. IV. Bacterial contributions to intestinal epithelial barrier integrity. Am J Physiol Gastrointest Liver Physiol 2005; 289: G779–84
  • Forsberg G., Fahlgren A., Horstedt P., Hammarstrom S., Hernell O., Hammarstrom M. L. Presence of bacteria and innate immunity of intestinal epithelium in childhood celiac disease. Am J Gastroenterol 2004; 99: 894–904
  • Diosdado B., Wapenaar M. C., Franke L., Duran K. J., Goerres M. J., Hadithi M., et al. A microarray screen for novel candidate genes in coeliac disease pathogenesis. Gut 2004; 53: 944–51
  • Mallant‐Hent R., Mary B., von Blomberg E., Yuksel Z., Wahab P. J., Gundy C., et al. Disappearance of anti‐Saccharomyces cerevisiae antibodies in coeliac disease during a gluten‐free diet. Eur J Gastroenterol Hepatol 2006; 18: 75–8
  • Zolotarevsky Y., Hecht G., Koutsouris A., Gonzalez D. E., Quan C., Tom J., et al. A membrane‐permeant peptide that inhibits MLC kinase restores barrier function in in vitro models of intestinal disease. Gastroenterology 2002; 123: 163–72
  • van Bodegraven A. A., Curley C. R., Hunt K. A., Monsuur A. J., Linskens R. K., Onnie C. M., et al. Genetic variation in myosin IXB is associated with ulcerative colitis. Gastroenterology, Published online, Sept 1, 2006
  • Post P. L., Bokoch G. M., Mooseker M. S. Human myosin‐IXb is a mechanochemically active motor and a GAP for rho. J Cell Sci 1998; 111((Pt 7))941–50
  • Post P. L., Tyska M. J., O'Connell C. B., Johung K., Hayward A., Mooseker M. S. Myosin‐IXb is a single‐headed and processive motor. J Biol Chem 2002; 277: 11679–83
  • Matter K., Balda M. S. Signalling to and from tight junctions. Nat Rev Mol Cell Biol 2003; 4: 225–36
  • Janiak A., Zemskov E. A., Belkin A. M. Cell surface transglutaminase promotes RhoA activation via integrin clustering and suppression of the Src‐p190RhoGAP signaling pathway. Mol Biol Cell 2006; 17: 1606–19
  • Blair S. A., Kane S. V., Clayburgh D. R., Turner J. R. Epithelial myosin light chain kinase expression and activity are upregulated in inflammatory bowel disease. Lab Invest 2006; 86: 191–201
  • Russo J. M., Florian P., Shen L., Graham W. V., Tretiakova M. S., Gitter A. H., et al. Distinct temporal‐spatial roles for rho kinase and myosin light chain kinase in epithelial purse‐string wound closure. Gastroenterology 2005; 128: 987–1001
  • Liu Z., Li N., Neu J. Tight junctions, leaky intestines, and pediatric diseases. Acta Paediatr 2005; 94: 386–93
  • Schreiber S. Slipping the barrier: how variants in CARD15 could alter permeability of the intestinal wall and population health. Gut 2006; 55: 308–9
  • Schreiber S., Rosenstiel P., Albrecht M., Hampe J., Krawczak M. Genetics of Crohn disease, an archetypal inflammatory barrier disease. Nat Rev Genet 2005; 6: 376–88
  • Cookson W. The immunogenetics of asthma and eczema: a new focus on the epithelium. Nat Rev Immunol 2004; 4: 978–88
  • Secondulfo M., Iafusco D., Carratu R., deMagistris L., Sapone A., Generoso M., et al. Ultrastructural mucosal alterations and increased intestinal permeability in non‐celiac, type I diabetic patients. Dig Liver Dis 2004; 36: 35–45
  • Karell K., Louka A. S., Moodie S. J., Ascher H., Clot F., Greco L., et al. HLA types in celiac disease patients not carrying the DQA1*05‐DQB1*02 (DQ2) heterodimer: results from the European Genetics Cluster on Celiac Disease. Hum Immunol 2003; 64: 469–77
  • Margaritte‐Jeannin P., Babron M. C., Bourgey M., Louka A. S., Clot F., Percopo S., et al. HLA‐DQ relative risks for coeliac disease in European populations: a study of the European Genetics Cluster on Coeliac Disease. Tissue Antigens 2004; 63: 562–7
  • Vader W., Stepniak D., Kooy Y., Mearin L., Thompson A., van Rood J. J., et al. The HLA‐DQ2 gene dose effect in celiac disease is directly related to the magnitude and breadth of gluten‐specific T cell responses. Proc Natl Acad Sci U S A 2003; 100: 12390–5
  • Koning F. Celiac disease: caught between a rock and a hard place. Gastroenterology 2005; 129: 1294–301
  • Al‐Toma A., Goerres M. S., Meijer J. W., Pena A. S., Crusius J. B., Mulder C. J. Human leukocyte antigen‐DQ2 homozygosity and the development of refractory celiac disease and enteropathy‐associated T‐cell lymphoma. Clin Gastroenterol Hepatol 2006; 4: 315–9
  • Kim C. Y., Quarsten H., Bergseng E., Khosla C., Sollid L. M. Structural basis for HLA‐DQ2‐mediated presentation of gluten epitopes in celiac disease. Proc Natl Acad Sci U S A 2004; 101: 4175–9
  • Molberg O., McAdam S. N., Korner R., Quarsten H., Kristiansen C., Madsen L., et al. Tissue transglutaminase selectively modifies gliadin peptides that are recognized by gut‐derived T cells in celiac disease. Nat Med 1998; 4: 713–7
  • Qiao S. W., Bergseng E., Molberg O., Jung G., Fleckenstein B., Sollid L. M. Refining the rules of gliadin T cell epitope binding to the disease‐associated DQ2 molecule in celiac disease: importance of proline spacing and glutamine deamidation. J Immunol 2005; 175: 254–61
  • Vader L. W., de Ru A., van der Wal Y., Kooy Y. M. C., Benckhuijsen W., Mearin M. L., et al. Specificity of Tissue Transglutaminase Explains Cereal Toxicity in Celiac Disease. J Exp Med 2002; 195: 643–9
  • Ciccocioppo R., Di Sabatino A., Ara C., Biagi F., Perilli M., Amicosante G., et al. Gliadin and tissue transglutaminase complexes in normal and coeliac duodenal mucosa. Clin Exp Immunol 2003; 134: 516–24
  • Sakly W., Sriha B., Ghedira I., Bienvenu F., Ayadi A., Sfar M. T., et al. Localization of tissue transglutaminase and N (epsilon)‐(gamma) ‐glutamyl lysine in duodenal cucosa during the development of mucosal atrophy in coeliac disease. Virchows Arch 2005; 446: 613–8
  • Dieterich W., Esslinger B., Trapp D., Hahn E., Huff T., Seilmeier W., et al. Cross linking to tissue transglutaminase and collagen favours gliadin toxicity in coeliac disease. Gut 2006; 55: 478–84
  • Aldersley M. A., Hamlin P. J., Jones P. F., Markham A. F., Robinson P. A., Howdle P. D. No polymorphism in the tissue transglutaminase gene detected in coeliac disease patients. Scand J Gastroenterol 2000; 35: 61–3
  • van Belzen M. J., Mulder C. J., Pearson P. L., Houwen R. H., Wijmenga C. The tissue transglutaminase gene is not a primary factor predisposing to celiac disease. Am J Gastroenterol 2001; 96: 3337–40
  • Jabri B., Kasarda D. D., Green P. H. Innate and adaptive immunity: the yin and yang of celiac disease. Immunol Rev 2005; 206: 219–31
  • Anderson R. P., Degano P., Godkin A. J., Jewell D. P., Hill A. V. In vivo antigen challenge in celiac disease identifies a single transglutaminase‐modified peptide as the dominant A‐gliadin T‐cell epitope. Nat Med 2000; 6: 337–42
  • Arentz‐Hansen H., Korner R., Molberg O., Quarsten H., Vader W., Kooy Y. M., et al. The intestinal T cell response to alpha‐gliadin in adult celiac disease is focused on a single deamidated glutamine targeted by tissue transglutaminase. J Exp Med 2000; 191: 603–12
  • Diosdado B., Wijmenga C. Molecular mechanisms of the adaptive, innate and regulatory immune responses in the intestinal mucosa of celiac disease patients. Expert Rev Mol Diagn 2005; 5: 681–700
  • Bottini N., Musumeci L., Alonso A., Rahmouni S., Nika K., Rostamkhani M., et al. A functional variant of lymphoid tyrosine phosphatase is associated with type I diabetes. Nat Genet 2004; 36: 337–8
  • Zhernakova A., Eerligh P., Wijmenga C., Barrera P., Roep B. O., Koeleman B. P. Differential association of the PTPN22 coding variant with autoimmune diseases in a Dutch population. Genes Immun 2005; 6: 459–61
  • Hue S., Mention J. J., Monteiro R. C., Zhang S., Cellier C., Schmitz J., et al. A direct role for NKG2D/MICA interaction in villous atrophy during celiac disease. Immunity 2004; 21: 367–77
  • van Belzen M. J., Koeleman B. P., Crusius J. B., Meijer J. W., Bardoel A. F., Pearson P. L., et al. Defining the contribution of the HLA region to cis DQ2‐positive coeliac disease patients. Genes Immun 2004; 5: 215–20
  • Di Sabatino A., Ciccocioppo R., Cupelli F., Cinque B., Millimaggi D., Clarkson M. M., et al. Epithelium derived interleukin 15 regulates intraepithelial lymphocyte Th1 cytokine production, cytotoxicity, and survival in coeliac disease. Gut 2006; 55: 469–77
  • Meresse B., Chen Z., Ciszewski C., Tretiakova M., Bhagat G., Krausz T. N., et al. Coordinated induction by IL15 of a TCR‐independent NKG2D signaling pathway converts CTL into lymphokine‐activated killer cells in celiac disease. Immunity 2004; 21: 357–66
  • Juuti‐Uusitalo K., Maki M., Kaukinen K., Collin P., Visakorpi T., Vihinen M., et al. cDNA microarray analysis of gene expression in coeliac disease jejunal biopsy samples. J Autoimmun 2004; 22: 249–65
  • Chakravarti A. Population genetics—making sense out of sequence. Nat Genet 1999; 21((Suppl))56–60
  • Glazier A. M., Nadeau J. H., Aitman T. J. Finding genes that underlie complex traits. Science 2002; 298: 2345–9
  • Risch N. J. Searching for genetic determinants in the new millennium. Nature 2000; 405: 847–56
  • Zondervan K. T., Cardon L. R. The complex interplay among factors that influence allelic association. Nat Rev Genet 2004; 5: 89–100
  • Van Belzen M. J., Meijer J. W., Sandkuijl L. A., Bardoel A. F., Mulder C. J., Pearson P. L., et al. A major non‐HLA locus in celiac disease maps to chromosome 19. Gastroenterology 2003; 125: 1032–41
  • Rioux J. D., Daly M. J., Silverberg M. S., Lindblad K., Steinhart H., Cohen Z., et al. Genetic variation in the 5q31 cytokine gene cluster confers susceptibility to Crohn disease. Nat Genet 2001; 29: 223–8

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.