682
Views
11
CrossRef citations to date
0
Altmetric
REVIEW ARTICLE

Cutaneous gene therapy

Pages 108-115 | Published online: 08 Jul 2009

References

  • Morgan J. R., Barrandon Y., Green H., Mulligan R. C. Expression of an exogenous growth hormone gene by transplantable human epidermal cells. Science 1987; 237: 1476–9
  • Palmer T. D., Hock R. A., Osborne W. R., Miller A. D. Efficient retrovirus‐mediated transfer and expression of a human adenosine deaminase gene in diploid skin fibroblasts from an adenosine deaminase‐deficient human. Proc Natl Acad Sci U S A 1987; 84: 1055–9
  • Anson D. S., Hock R. A., Austen D., Smith K. J., Brownlee G. G., Verma I. M., et al. Towards gene therapy for hemophilia B. Mol Biol Med 1987; 4: 11–20
  • Hengge U. R. Progress and prospects of skin gene therapy: a ten year history. Clin Dermatol 2005; 23: 107–14
  • Khavari P. A., Rollman O., Vahlquist A. Cutaneous gene transfer for skin and systemic diseases. J Intern Med 2002; 252: 1–10
  • Christensen R., Jensen U. B., Jensen T. G. Cutaneous gene therapy—an update. Histochem Cell Biol 2001; 115: 73–82
  • Palmer T. D., Rosman G. J., Osborne W. R., Miller A. D. Genetically modified skin fibroblasts persist long after transplantation but gradually inactivate introduced genes. Proc Natl Acad Sci U S A 1991; 88: 1330–4
  • Jensen U. B., Jensen T. G., Jensen P. K., Rygaard J., Hansen B. S., Fogh J., et al. Gene transfer into cultured human epidermis and its transplantation onto immunodeficient mice: an experimental model for somatic gene therapy. J Invest Dermatol 1994; 103: 391–4
  • Fenjves E. S., Yao S. N., Kurachi K., Taichman L. B. Loss of expression of a retrovirus‐transduced gene in human keratinocytes. J Invest Dermatol 1996; 106: 576–8
  • Fenjves E. S., Schwartz P. M., Blaese R. M., Taichman L. B. Keratinocyte gene therapy for adenosine deaminase deficiency: a model approach for inherited metabolic disorders. Hum Gene Ther 1997; 8: 911–7
  • Katz A. B., Taichman L. B. Epidermis as a secretory tissue: an in vitro tissue model to study keratinocyte secretion. J Invest Dermatol 1994; 102: 55–60
  • Larcher F., Del Rio M., Serrano F., Segovia J. C., Ramirez A., Meana A., et al. A cutaneous gene therapy approach to human leptin deficiencies: correction of the murine ob/ob phenotype using leptin‐targeted keratinocyte grafts. FASEB J 2001; 15: 1529–38
  • Baek S. C., Lin Q., Robbins P. B., Fan H., Khavari P. A. Sustainable systemic delivery via a single injection of lentivirus into human skin tissue. Hum Gene Ther 2001; 12: 1551–8
  • Fakharzadeh S. S., Zhang Y., Sarkar R., Kazazian H. H., Jr. Correction of the coagulation defect in hemophilia A mice through factor VIII expression in skin. Blood 2000; 95: 2799–805
  • Gerrard A. J., Hudson D. L., Brownlee G. G., Watt F. M. Towards gene therapy for haemophilia B using primary human keratinocytes. Nat Genet 1993; 3: 180–3
  • Hengge U. R., Chan E. F., Foster R. A., Walker P. S., Vogel J. C. Cytokine gene expression in epidermis with biological effects following injection of naked DNA. Nat Genet 1995; 10: 161–6
  • Meng X., Sawamura D., Tamai K., Hanada K., Ishida H., Hashimoto I. Keratinocyte gene therapy for systemic diseases. Circulating interleukin 10 released from gene‐transferred keratinocytes inhibits contact hypersensitivity at distant areas of the skin. J Clin Invest 1998; 101: 1462–7
  • Noel D., Dazard J. E., Pelegrin M., Jacquet C., Piechaczyk M. Skin as a potential organ for ectopic monoclonal antibody production. J Invest Dermatol 2002; 118: 288–94
  • Carretero M., Del Rio M., Garcia M., Escamez M. J., Mirones I., Rivas L., et al. A cutaneous gene therapy approach to treat infection through keratinocyte‐targeted overexpression of antimicrobial peptides. FASEB J 2004; 18: 1931–3
  • Yao F., Eriksson E. A novel tetracycline‐inducible viral replication switch. Hum Gene Ther 1999; 10: 419–27
  • Freiberg R. A., Ho S. N., Khavari P. A. Transcriptional control in keratinocytes and fibroblasts using synthetic ligands. J Clin Invest 1997; 99: 2610–5
  • Gandarillas A., Watt F. M. c‐Myc promotes differentiation of human epidermal stem cells. Genes Dev 1997; 11: 2869–82
  • Cao T., Tsai S. Y., O'Malley B. W., Wang X. J., Roop D. R. The epidermis as a bioreactor: topically regulated cutaneous delivery into the circulation. Hum Gene Ther 2002; 13: 1075–80
  • Ghazizadeh S., Harrington R., Garfield J., Taichman L. B. Retrovirus‐mediated transduction of porcine keratinocytes in organ culture. J Invest Dermatol 1998; 111: 492–6
  • Pfutzner W., Terunuma A., Tock C. L., Snead E. K., Kolodka T. M., Gottesman M. M., et al. Topical colchicine selection of keratinocytes transduced with the multidrug resistance gene (MDR1) can sustain and enhance transgene expression in vivo. Proc Natl Acad Sci U S A 2002; 99: 13096–101
  • Deng H., Choate K. A., Lin Q., Khavari P. A. High‐efficiency gene transfer and pharmacologic selection of genetically engineered human keratinocytes. Biotechniques 1998; 25: 274–80
  • Jensen T. G. Gene transfer into human epidermis as an experimental model for somatic gene therapy. Dan Med Bull 2004; 51: 155–66
  • Bajaj B. G., Lei P., Andreadis S. T. Efficient gene transfer to human epidermal keratinocytes on fibronectin: in vitro evidence for transduction of epidermal stem cells. Mol Ther 2005; 11: 969–79
  • Jensen U. B., Lowell S., Watt F. M. The spatial relationship between stem cells and their progeny in the basal layer of human epidermis: a new view based on whole‐mount labelling and lineage analysis. Development 1999; 126: 2409–18
  • Watt F. M. The stem cell compartment in human interfollicular epidermis. J Dermatol Sci 2002; 28: 173–80
  • Cotsarelis G. Epithelial stem cells: a folliculocentric view. J Invest Dermatol 2006; 126: 1459–68
  • Ito M., Liu Y., Yang Z., Nguyen J., Liang F., Morris R. J., et al. Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epidermis. Nat Med 2005; 11: 1351–4
  • Hoeller D., Huppertz B., Roos T. C., Poblete Gutierrez P., Merk H. F., Frank J., et al. An improved and rapid method to construct skin equivalents from human hair follicles and fibroblasts. Exp Dermatol 2001; 10: 264–71
  • Navsaria H. A., Ojeh N. O., Moiemen N., Griffiths M. A., Frame J. D. Reepithelialization of a full‐thickness burn from stem cells of hair follicles micrografted into a tissue‐engineered dermal template (Integra). Plast Reconstr Surg 2004; 113: 978–81
  • Hoffman R. M. The hair follicle and its stem cells as drug delivery targets. Expert Opin Drug Deliv 2006; 3: 437–43
  • Amoh Y., Li L., Katsuoka K., Penman S., Hoffman R. M. Multipotent nestin‐positive, keratin‐negative hair‐follicle bulge stem cells can form neurons. Proc Natl Acad Sci U S A 2005; 102: 5530–4
  • Flores I., Benetti R., Blasco M. A. Telomerase regulation and stem cell behaviour. Curr Opin Cell Biol 2006; 18: 254–60
  • Bickenbach J. R., Vormwald‐Dogan V., Bachor C., Bleuel K., Schnapp G., Boukamp P. Telomerase is not an epidermal stem cell marker and is downregulated by calcium. J Invest Dermatol 1998; 111: 1045–52
  • Sarin K. Y., Cheung P., Gilison D., Lee E., Tennen R. I., Wang E., et al. Conditional telomerase induction causes proliferation of hair follicle stem cells. Nature 2005; 436: 1048–52
  • Flores I., Cayuela M. L., Blasco M. A. Effects of telomerase and telomere length on epidermal stem cell behavior. Science 2005; 309: 1253–6
  • Hahn W. C., Counter C. M., Lundberg A. S., Beijersbergen R. L., Brooks M. W., Weinberg R. A. Creation of human tumour cells with defined genetic elements. Nature 1999; 400: 464–8
  • Bodnar A. G., Ouellette M., Frolkis M., Holt S. E., Chiu C. P., Morin G. B., et al. Extension of life‐span by introduction of telomerase into normal human cells. Science 1998; 279: 349–52
  • Jensen T. G., Sorensen C. B., Jensen U. B., Bolund L. Epidermolysis Bullosa Simplex Keratinocytes with Extended Lifespan established by ectopic Expression of Telomerase. Exp Dermatol 2003; 12: 71–7
  • Fan H., Lin Q., Morrissey G. R., Khavari P. A. Immunization via hair follicles by topical application of naked DNA to normal skin. Nat Biotechnol 1999; 17: 870–2
  • Meykadeh N., Mirmohammadsadegh A., Wang Z., Basner‐Tschakarjan E., Hengge U. R. Topical application of plasmid DNA to mouse and human skin. J Mol Med 2005; 83: 897–903
  • Foldvari M., Kumar P., King M., Batta R., Michel D., Badea I., et al. Gene delivery into human skin in vitro using biphasic lipid vesicles. Curr Drug Deliv 2006; 3: 89–93
  • Ghazizadeh S., Harrington R., Taichman L. In vivo transduction of mouse epidermis with recombinant retroviral vectors: implications for cutaneous gene therapy. Gene Ther 1999; 6: 1267–75
  • Donahue B. A., McArthur J. G., Spratt S. K., Bohl D., Lagarde C., Sanchez L., et al. Selective uptake and sustained expression of AAV vectors following subcutaneous delivery. J Gene Med 1999; 1: 31–42
  • Hengge U. R., Mirmohammadsadegh A. Adeno‐associated virus expresses transgenes in hair follicles and epidermis. Mol Ther 2000; 2: 188–94
  • Jensen T. G., Jensen U. B., Bolund L. Production of retroviral vectors in primary human keratinocytes after DNA‐mediated gene transfer leads to prolonged gene expression. Acta Derm Venereol 2003; 83: 83–7
  • Jensen T. G. Strategies for long‐term gene expression in the skin to treat metabolic disorders. Expert Opin Biol Ther 2004; 4: 677–82
  • Sullivan D. M., Jensen T. G., Taichman L. B., Csaky K. G. Ornithine‐delta‐aminotransferase expression and ornithine metabolism in cultured epidermal keratinocytes: toward metabolic sink therapy for gyrate atrophy. Gene Ther 1997; 4: 1036–44
  • Jensen T. G., Sullivan D. M., Morgan R. A., Taichman L. B., Nussenblatt R. B., Blaese R. M., et al. Retrovirus‐mediated gene transfer of ornithine‐delta‐aminotransferase into keratinocytes from gyrate atrophy patients. Hum Gene Ther 1997; 8: 2125–32
  • Christensen R., Kolvraa S., Blaese R. M., Jensen T. G. Development of a skin‐based metabolic sink for phenylalanine by overexpression of phenylalanine hydroxylase and GTP cyclohydrolase in primary human keratinocytes. Gene Ther 2000; 7: 1971–8
  • Christensen R., Alhonen L., Wahlfors J., Jakobsen M., Jensen T. G. Characterization of transgenic mice with the expression of phenylalanine hydroxylase and GTP cyclohydrolase I in the skin. Exp Dermatol 2005; 14: 535–42
  • Christensen R., Kolvraa S., Jensen T. G. Manipulation of the phenylalanine metabolism in human keratinocytes by retroviral mediated gene transfer. Cells Tissues Organs 2005; 179: 170–8
  • Petrie N. C., Vranckx J. J., Hoeller D., Yao F., Eriksson E. Gene delivery of PDGF for wound healing therapy. J Tissue Viability 2005; 15: 16–21
  • Rogers B., Lineaweaver W. C. Skin wound healing and cell‐mediated DNA transport. J Long Term Eff Med Implants 2002; 12: 125–30
  • Jacobsen F., Mittler D., Hirsch T., Gerhards A., Lehnhardt M., Voss B., et al. Transient cutaneous adenoviral gene therapy with human host defense peptide hCAP‐18/LL‐37 is effective for the treatment of burn wound infections. Gene Ther 2005; 12: 1494–502
  • Liu P. Y., Liu K., Wang X. T., Badiavas E., Rieger‐Christ K. M., Tang J. B., et al. Efficacy of combination gene therapy with multiple growth factor cDNAs to enhance skin flap survival in a rat model. DNA Cell Biol 2005; 24: 751–7
  • Jeschke M. G., Klein D. Liposomal gene transfer of multiple genes is more effective than gene transfer of a single gene. Gene Ther 2004; 11: 847–55
  • Moulin V. Growth factors in skin wound healing. Eur J Cell Biol 1995; 68: 1–7
  • Rollman O., Jensen U. B., Ostman A., Bolund L., Gustafsdottir S. M., Jensen T. G. Platelet derived growth factor (PDGF) responsive epidermis formed from human keratinocytes transduced with the PDGF beta receptor gene. J Invest Dermatol 2003; 120: 742–9
  • Yoon K., Cole‐Strauss A., Kmiec E. B. Targeted gene correction of episomal DNA in mammalian cells mediated by a chimeric RNA.DNA oligonucleotide. Proc Natl Acad Sci U S A 1996; 93: 2071–6
  • Andersen M. S., Sorensen C. B., Bolund L., Jensen T. G. Mechanisms underlying targeted gene correction using chimeric RNA/DNA and single‐stranded DNA oligonucleotides. J Mol Med 2002; 80: 770–81
  • Alexeev V., Yoon K. Stable and inheritable changes in genotype and phenotype of albino melanocytes induced by an RNA‐DNA oligonucleotide. Nat Biotechnol 1998; 16: 1343–6
  • Alexeev V., Igoucheva O., Domashenko A., Cotsarelis G., Yoon K. Localized in vivo genotypic and phenotypic correction of the albino mutation in skin by RNA‐DNA oligonucleotide. Nat Biotechnol 2000; 18: 43–7
  • Santana E., Peritz A. E., Iyer S., Uitto J., Yoon K. Different frequency of gene targeting events by the RNA‐DNA oligonucleotide among epithelial cells. J Invest Dermatol 1998; 111: 1172–7
  • Urnov F. D., Miller J. C., Lee Y. L., Beausejour C. M., Rock J. M., Augustus S., et al. Highly efficient endogenous human gene correction using designed zinc‐finger nucleases. Nature 2005; 435: 646–51
  • Porteus M. H., Carroll D. Gene targeting using zinc finger nucleases. Nat Biotechnol 2005; 23: 967–73
  • Cao T., Longley M. A., Wang X. J., Roop D. R. An inducible mouse model for epidermolysis bullosa simplex: implications for gene therapy. J Cell Biol 2001; 152: 651–6
  • Ferrari S., Pellegrini G., Matsui T., Mavilio F., De Luca M. Gene therapy in combination with tissue engineering to treat epidermolysis bullosa. Expert Opin Biol Ther 2006; 6: 367–78
  • Ferrari S., Pellegrini G., Mavilio F., De Luca M. Gene therapy approaches for epidermolysis bullosa. Clin Dermatol 2005; 23: 430–6
  • Ortiz‐Urda S., Thyagarajan B., Keene D. R., Lin Q., Fang M., Calos M. P., et al. Stable nonviral genetic correction of inherited human skin disease. Nat Med 2002; 8: 1166–70
  • Ortiz‐Urda S., Lin Q., Yant S. R., Keene D., Kay M. A., Khavari P. A. Sustainable correction of junctional epidermolysis bullosa via transposon‐mediated nonviral gene transfer. Gene ther 2003; 10: 1099–104
  • Chen M., Kasahara N., Keene D. R., Chan L., Hoeffler W. K., Finlay D., et al. Restoration of type VII collagen expression and function in dystrophic epidermolysis bullosa. Nat Genet 2002; 32: 670–5
  • Arnaudeau‐Begard C., Brellier F., Chevallier‐Lagente O., Hoeijmakers J., Bernerd F., Sarasin A., et al. Genetic correction of DNA repair‐deficient/cancer‐prone xeroderma pigmentosum group C keratinocytes. Hum Gene Ther 2003; 14: 983–96
  • Marchetto M. C., Muotri A. R., Burns D. K., Friedberg E. C., Menck C. F. Gene transduction in skin cells: preventing cancer in xeroderma pigmentosum mice. Proc Natl Acad Sci U S A 2004; 101: 17759–64
  • Domashenko A., Gupta S., Cotsarelis G. Efficient delivery of transgenes to human hair follicle progenitor cells using topical lipoplex. Nat Biotechnol 2000; 18: 420–3
  • Sugiyama‐Nakagiri Y., Akiyama M., Shimizu H. Hair follicle stem cell‐targeted gene transfer and reconstitution system. Gene Ther 2006; 13: 732–7
  • Sato N., Leopold P. L., Crystal R. G. Induction of the hair growth phase in postnatal mice by localized transient expression of Sonic hedgehog. J Clin Invest 1999; 104: 855–64
  • Sato N., Leopold P. L., Crystal R. G. Effect of adenovirus‐mediated expression of Sonic hedgehog gene on hair regrowth in mice with chemotherapy‐induced alopecia. J Natl Cancer Inst 2001; 93: 1858–64
  • Hengge U. R., Bardenheuer W. Gene therapy and the skin. Am J Med Genet C Semin Med Genet 2004; 131C: 93–100
  • Lu Z., Ghazizadeh S. Host immune responses in ex vivo approaches to cutaneous gene therapy targeted to keratinocytes. Exp Dermatol 2005; 14: 727–35
  • Larregina A. T., Falo L. D., Jr. Generating and regulating immune responses through cutaneous gene delivery. Hum Gene Ther 2000; 11: 2301–5
  • Rakhmilevich A. L., Turner J., Ford M. J., McCabe D., Sun W. H., Sondel P. M., et al. Gene gun‐mediated skin transfection with interleukin 12 gene results in regression of established primary and metastatic murine tumors. Proc Natl Acad Sci U S A 1996; 93: 6291–6
  • Sun W. H., Burkholder J. K., Sun J., Culp J., Turner J., Lu X. G., et al. In vivo cytokine gene transfer by gene gun reduces tumor growth in mice. Proc Natl Acad Sci U S A 1995; 92: 2889–93
  • Nabel G. J., Nabel E. G., Yang Z. Y., Fox B. A., Plautz G. E., Gao X., et al. Direct gene transfer with DNA‐liposome complexes in melanoma: expression, biologic activity, and lack of toxicity in humans. Proc Natl Acad Sci U S A 1993; 90: 11307–11
  • Nabel G. J., Gordon D., Bishop D. K., Nickoloff B. J., Yang Z. Y., Aruga A., et al. Immune response in human melanoma after transfer of an allogeneic class I major histocompatibility complex gene with DNA‐liposome complexes. Proc Natl Acad Sci U S A 1996; 93: 15388–93
  • Quintin‐Colonna F., Devauchelle P., Fradelizi D., Mourot B., Faure T., Kourilsky P., et al. Gene therapy of spontaneous canine melanoma and feline fibrosarcoma by intratumoral administration of histoincompatible cells expressing human interleukin‐2. Gene Ther 1996; 3: 1104–12
  • Peachman K. K., Rao M., Alving C. R. Immunization with DNA through the skin. Methods 2003; 31: 232–42
  • Condon C., Watkins S. C., Celluzzi C. M., Thompson K., Falo L. D., Jr. DNA‐based immunization by in vivo transfection of dendritic cells. Nat Med 1996; 2: 1122–8
  • Porgador A., Irvine K. R., Iwasaki A., Barber B. H., Restifo N. P., Germain R. N. Predominant role for directly transfected dendritic cells in antigen presentation to CD8+ T cells after gene gun immunization. J Exp Med 1998; 188: 1075–82
  • Celluzzi C. M., Falo L. D., Jr. Physical interaction between dendritic cells and tumor cells results in an immunogen that induces protective and therapeutic tumor rejection. J Immunol 1998; 160: 3081–5
  • Albert M. L., Sauter B., Bhardwaj N. Dendritic cells acquire antigen from apoptotic cells and induce class I‐restricted CTLs. Nature 1998; 392: 86–9

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.