387
Views
23
CrossRef citations to date
0
Altmetric
Review Article

Connexins: New genes in atherosclerosis

&
Pages 402-411 | Published online: 08 Jul 2009

References

  • Ross R. Cell biology of atherosclerosis. Annu Rev Physiol 1995; 57: 791–804
  • Ross R. Atherosclerosis: an inflammatory disease. N Engl J Med 1999; 340: 115–26
  • Glass C. K., Witztum J. L. Atherosclerosis: the road ahead. Cell 2001; 104: 503–16
  • Libby P. Inflammation in atherosclerosis. Nature 2002; 420: 868–74
  • Hansson G. K. Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med 2005; 352: 1685–95
  • Tedgui A., Mallat Z. Cytokines in atherosclerosis: pathogenic and regulatory pathways. Physiol Rev 2006; 86: 515–81
  • Gimbrone M. A Jr. Endothelial dysfunction, hemodynamic forces, and atherosclerosis. Thromb Haemost 1999; 82: 722–6
  • Konstantopoulos K., McIntire L. V. Effects of fluid dynamic forces on vascular cell adhesion. J Clin Invest 1996; 98: 2661–5
  • Chien S., Li S., Shyy Y. J. Effects of mechanical forces on signal transduction and gene expression in endothelial cells. Hypertension 1998; 31: 162–9
  • Davies P. F., Spaan J. A., Krams R. Shear stress biology of the endothelium. Ann Biomed Eng 2005; 33: 1714–8
  • Hansson G. K., Libby P. The immune response in atherosclerosis: a double‐edged sword. Nat Rev Immunol 2006; 6: 508–19
  • Virmani R., Burke A. P., Farb A., Kolodgie F. D. Pathology of the vulnerable plaque. J Am Coll Cardiol 2006; 47: C13–8
  • Newby A. C. Matrix metalloproteinases regulate migration, proliferation, and death of vascular smooth muscle cells by degrading matrix and non‐matrix substrates. Cardiovasc Res 2006; 69: 614–24
  • Saez J. C., Berthoud V. M., Branes M. C., Martinez A. D., Beyer E. C. Plasma membrane channels formed by connexins: their regulation and functions. Physiol Rev 2003; 83: 1359–400
  • Sohl G., Willecke K. Gap junctions and the connexin protein family. Cardiovasc Res 2004; 62: 228–32
  • Harris A. L. Emerging issues of connexin channels: biophysics fills the gap. Q Rev Biophys 2001; 34: 325–472
  • Goodenough D. A., Paul D. L. Beyond the gap: functions of unpaired connexon channels. Nat Rev Mol Cell Biol 2003; 4: 285–94
  • Elfgang C., Eckert R., Lichtenberg‐Frate H., Butterweck A., Traub O., Klein R. A., et al. Specific permeability and selective formation of gap junction channels in connexin‐transfected HeLa cells. J Cell Biol 1995; 129: 805–17
  • Kwak B. R., Hermans M. M., De Jonge H. R., Lohmann S. M., Jongsma H. J., Chanson M. Differential regulation of distinct types of gap junction channels by similar phosphorylating conditions. Mol Biol Cell 1995; 6: 1707–19
  • Goldberg G. S., Lampe P. D., Nicholson B. J. Selective transfer of endogenous metabolites through gap junctions composed of different connexins. Nat Cell Biol 1999; 1: 457–9
  • Bevans C. G., Kordel M., Rhee S. K., Harris A. L. Isoform composition of connexin channels determines selectivity among second messengers and uncharged molecules. J Biol Chem 1998; 273: 2808–16
  • Hill C. E., Phillips J. K., Sandow S. L. Heterogeneous control of blood flow amongst different vascular beds. Med Res Rev 2001; 21: 1–60
  • Figueroa X. F., Isakson B. E., Duling B. R. Connexins: gaps in our knowledge of vascular function. Physiology (Bethesda) 2004; 19: 277–84
  • De Wit C., Hoepfl B., Wolfle S. E. Endothelial mediators and communication through vascular gap junctions. Biol Chem 2006; 387: 3–9
  • van Kempen M. J., Jongsma H. J. Distribution of connexin37, connexin40 and connexin43 in the aorta and coronary artery of several mammals. Histochem Cell Biol 1999; 112: 479–86
  • Gabriels J. E., Paul D. L. Connexin43 is highly localized to sites of disturbed flow in rat aortic endothelium but connexin37 and connexin40 are more uniformly distributed. Circ Res 1998; 83: 636–43
  • Theis M., de Wit C., Schlaeger T. M., Eckardt D., Kruger O., Doring B., et al. Endothelium‐specific replacement of the connexin43 coding region by a lacZ reporter gene. Genesis 2001; 29: 1–13
  • Little T. L., Beyer E. C., Duling B. R. Connexin 43 and connexin 40 gap junctional proteins are present in arteriolar smooth muscle and endothelium in vivo. Am J Physiol 1995; 268: H729–39
  • Haefliger J. A., Polikar R., Schnyder G., Burdet M., Sutter E., Pexieder T., et al. Connexin37 in normal and pathological development of mouse heart and great arteries. Dev Dyn 2000; 218: 331–44
  • Beny J. L. Information Networks in the Arterial Wall. News Physiol Sci 1999; 14: 68–73
  • Kwak B. R., Pepper M. S., Gros D. B., Meda P. Inhibition of endothelial wound repair by dominant negative connexin inhibitors. Mol Biol Cell 2001; 12: 831–45
  • de Wit C., Roos F., Bolz S. S., Kirchhoff S., Kruger O., Willecke K., et al. Impaired conduction of vasodilation along arterioles in connexin40‐deficient mice. Circ Res 2000; 86: 649–55
  • de Wit C., Roos F., Bolz S. S., Pohl U. Lack of vascular connexin 40 is associated with hypertension and irregular arteriolar vasomotion. Physiol Genomics 2003; 13: 169–77
  • Liao Y., Day K. H., Damon D. N., Duling B. R. Endothelial cell‐specific knockout of connexin 43 causes hypotension and bradycardia in mice. Proc Natl Acad Sci USA 2001; 98: 9989–94
  • Kruger O., Plum A., Kim J. S., Winterhager E., Maxeiner S., Hallas G., et al. Defective vascular development in connexin 45‐deficient mice. Development 2000; 127: 4179–93
  • Simon A. M., Goodenough D. A., Li E., Paul D. L. Female infertility in mice lacking connexin 37. Nature 1997; 385: 525–29
  • Figueroa X. F., Isakson B. E., Duling B. R. Vascular gap junctions in hypertension. Hypertension 1996; 48: 804–11
  • Simon A. M., McWhorter A. R. Vascular abnormalities in mice lacking the endothelial gap junction proteins connexin37 and connexin40. Dev Biol 2002; 251: 206–20
  • Blackburn J. P., Peters N. S., Yeh H. I., Rothery S., Green C. R., Severs N. J. Upregulation of connexin43 gap junctions during early stages of human coronary atherosclerosis. Arterioscler Thromb Vasc Biol 1995; 15: 1219–28
  • Polacek D., Bech F., McKinsey, Davies P. F. Connexin43 gene expression in the rabbit arterial wall: effects of hypercholesterolemia, balloon injury and their combination. J Vasc Res 1996; 34: 19–30
  • Kwak B. R., Mulhaupt F., Veillard N., Gros D. B., Mach F. Altered pattern of vascular connexin expression in atherosclerotic plaques. Arterioscler Thromb Vasc Biol 2002; 22: 225–30
  • Yeh H. I., Lu C. S., Wu Y. J., Chen C. C., Hong R. C., Ko Y. S., et al. Reduced expression of endothelial connexin37 and connexin40 in hyperlipidemic mice: recovery of connexin37 after 7‐day simvastatin treatment. Arterioscler Thromb Vasc Biol 2003; 23: 1391–7
  • Cowan D. B., Lye S. J., Langille B. L. Regulation of vascular connexin43 gene expression by mechanical loads. Circ Res 1998; 82: 786–93
  • DePaola N., Davies P. F., Pritchard W. F Jr., Florez L., Harbeck N., Polacek D. C. Spatial and temporal regulation of gap junction connexin43 in vascular endothelial cells exposed to controlled disturbed flows in vitro. Proc Natl Acad Sci USA 1999; 96: 3154–59
  • Davies P. F., Shi C., Depaola N., Helmke B. P., Polacek D. C. Hemodynamics and the focal origin of atherosclerosis: a spatial approach to endothelial structure, gene expression, and function. Ann N Y Acad Sci 2001; 947: 7–16
  • Kwak B. R., Silacci P., Stergiopulos N., Hayoz D., Meda P. Shear stress and cyclic circumferential stretch, but not pressure, alter connexin43 expression in endothelial cells. Cell Commun Adhes 2005; 12: 261–70
  • Meyer R., Malewicz B., Baumann W. J., Johnson R. G. Increased gap junction assembly between cultured cells upon cholesterol supplementation. J Cell Sci 1990; 96: 231–8
  • Meyer R. A., Lampe P. D., Malewicz B., Baumann W. J., Johnson R. G. Enhanced gap junction formation with LDL and apolipoprotein B. Exp Cell Res 1991; 196: 72–81
  • Paulson A. F., Lampe P. D., Meyer R. A., TenBroek E., Atkinson M. M., Walseth T. F., et al. Cyclic AMP and LDL trigger a rapid enhancement in gap junction assembly through a stimulation of connexin trafficking. J Cell Sci 2000; 113: 3037–49
  • Bastiaanse E. M., Jongsma H. J., van der Laarse A., Takens‐Kwak B. R. Heptanol‐induced decrease in cardiac gap junctional conductance is mediated by a decrease in the fluidity of membranous cholesterol‐rich domains. J Membr Biol 1993; 136: 135–45
  • Isakson B. E., Kronke G., Kadl A., Leitinger N., Duling B. R. Oxidized phospholipids alter vascular connexin expression, phosphorylation, and heterocellular communication. Arterioscler Thromb Vasc Biol 2006; 26: 2216–21
  • De Maio A., Vega V. L., Contreras J. E. Gap junctions, homeostasis, and injury. J Cell Physiol 2002; 191: 269–82
  • Chanson M., Derouette J. P., Roth I., Foglia B., Scerri I., Dudez T., et al. Gap junctional communication in tissue inflammation and repair. Biochim Biophys Acta 2005; 1711: 197–207
  • Hu V. W., Xie H. Q. Interleukin‐1 alpha suppresses gap junction‐mediated intercellular communication in human endothelial cells. Exp Cell Res 1994; 213: 218–23
  • van Rijen H. V., van Kempen M. J., Postma S., Jongsma H. J. Tumour necrosis factor alpha alters the expression of connexin43, connexin40, and connexin37 in human umbilical vein endothelial cells. Cytokine 1998; 10: 258–64
  • Mensink A., de Haan L. H., Lakemond C. M., Koelman C. A., Koeman J. H. Inhibition of gap junctional intercellular communication between primary human smooth muscle cells by tumor necrosis factor alpha. Carcinogenesis 1995; 16: 2063–7
  • Hu J., Cotgreave I. A. Differential regulation of gap junctions by proinflammatory mediators in vitro. J Clin Invest 1997; 99: 2312–6
  • Zahler S., Hoffmann A., Gloe T., Pohl U. Gap‐junctional coupling between neutrophils and endothelial cells: a novel modulator of transendothelial migration. J Leukoc Biol 2003; 73: 118–26
  • Scerri I., Tabary O., Dudez T., Jacquot J., Foglia B., Suter S., et al. Gap junctional communication does not contribute to the interaction between neutrophils and airway epithelial cells. Cell Commun Adhes 2006; 13: 1–12
  • Eugenin E. A., Branes M. C., Berman J. W., Saez J. C. TNF‐alpha plus IFN‐gamma induce connexin43 expression and formation of gap junctions between human monocytes/macrophages that enhance physiological responses. J Immunol 2003; 170: 1320–8
  • Oviedo‐Orta E., Errington R. J., Evans W. H. Gap junction intercellular communication during lymphocyte transendothelial migration. Cell Biol Int 2002; 26: 253–63
  • Wong C. W., Christen T., Kwak B. R. Connexins in leukocytes: shuttling messages?. Cardiovasc Res 2004; 62: 357–67
  • Wong C. W., Christen T., Roth I., Chadjichristos C. E., Derouette J. P., Foglia B. F., et al. Connexin37 protects against atherosclerosis by regulating monocyte adhesion. Nat Med 2006; 12: 950–4
  • Boerma M., Forsberg L., Van Zeijl L., Morgenstern R., De Faire U., Lemne C., et al. A genetic polymorphism in connexin 37 as a prognostic marker for atherosclerotic plaque development. J Intern Med 1999; 246: 211–18
  • Yamada Y., Izawa H., Ichihara S., Takatsu F., Ishihara H., Hirayama H., et al. Prediction of the risk of myocardial infarction from polymorphisms in candidate genes. N Engl J Med 2002; 347: 1916–23
  • Yeh H. I., Chou Y., Liu H. F., Chang S. C., Tsai C. H. Connexin37 gene polymorphism and coronary artery disease in Taiwan. Int J Cardiol 2001; 81: 251–5
  • Listi F., Candore G., Lio D., Russo M., Colonna‐Romano G., Caruso M., et al. Association between C1019T polymorphism of connexin37 and acute myocardial infarction: a study in patients from Sicily. Int J Cardiol 2005; 102: 269–71
  • Wong C. W., Christen T., Pfenniger A., James R. W., Kwak B. R. Do allelic variants of the connexin37 1019 gene polymorphism differentially predict for coronary artery disease and myocardial infarction?. Atherosclerosis 2007; 191: 355–61
  • Rennick R. E., Connat J. L., Burnstock G., Rothery S., Severs N. J., Green C. R. Expression of connexin43 gap junctions between cultured vascular smooth muscle cells is dependent upon phenotype. Cell Tissue Res 1993; 271: 323–32
  • Kurjiaka D. T., Steele T. D., Olsen M. V., Burt J. M. Gap junction permeability is diminished in proliferating vascular smooth muscle cells. Am J Physiol 1998; 275: C1674–82
  • Polacek D., Lal R., Volin M. V., Davies P. F. Gap junctional communication between vascular cells. Induction of connexin43 messenger RNA in macrophage foam cells of atherosclerotic lesions. Am J Pathol 1993; 142: 593–606
  • Reaume A. G., de Sousa P. A., Kulkarni S., Langille B. L., Zhu D., Davies T. C., et al. Cardiac malformation in neonatal mice lacking connexin43. Science 1995; 267: 1831–4
  • Guerrero P. A., Schuessler R. B., Davis L. M., Beyer E. C., Johnson C. M., Yamada K. A., et al. Slow ventricular conduction in mice heterozygous for a connexin43 null mutation. J Clin Invest 1997; 99: 1991–8
  • Kwak B. R., Veillard N., Pelli G., Mulhaupt F., James R. W., Chanson M., et al. Reduced connexin43 expression inhibits atherosclerotic lesion formation in low‐density lipoprotein receptor‐deficient mice. Circulation 2003; 107: 1033–9
  • Wong C. W., Burger F., Pelli G., Mach F., Kwak B. R. Dual benefit of reduced Cx43 on atherosclerosis in LDL receptor‐deficient mice. Cell Commun Adhes 2003; 10: 395–400
  • Vaughan C. J., Gotto AM J. r., Basson C. T. The evolving role of statins in the management of atherosclerosis. J Am Coll Cardiol 2000; 35: 1–10
  • Strandberg T. E., Pyorala K., Cook T. J., Wilhelmsen L., Faergeman O., Thorgeirsson G., et al. Mortality and incidence of cancer during 10‐year follow‐up of the Scandinavian Simvastatin Survival Study (4S). Lancet 2004; 364: 771–7
  • Arnaud C., Braunersreuther V., Mach F. Toward immunomodulatory and anti‐inflammatory properties of statins. Trends Cardiovasc Med 2005; 15: 202–6
  • Libby P., Aikawa M. Stabilization of atherosclerotic plaques: new mechanisms and clinical targets. Nat Med 2002; 8: 1257–62
  • Serruys P. W., de Jaegere P., Kiemeneij F., Macaya C., Rutsch W., Heyndrickx G., et al. A comparison of balloon‐expandable‐stent implantation with balloon angioplasty in patients with coronary artery disease. Benestent Study Group. N Engl J Med 1994; 331: 489–95
  • Lee S. S., Price M. J., Wong G. B., Valencia R., Damani S., Sawhney N., et al. Early‐ and medium‐term outcomes after paclitaxel‐eluting stent implantation for sirolimus‐eluting stent failure. Am J Cardiol 2006; 98: 1345–8
  • Yeh H. I., Lupu F., Dupont E., Severs N. J. Upregulation of connexin43 gap junctions between smooth muscle cells after balloon catheter injury in the rat carotid artery. Arterioscler Thromb Vasc Biol 1997; 17: 3174–84
  • Plenz G., Ko Y. S., Yeh H. I., Eschert H., Sindermann J. R., Dorszewski A., et al. Upregulation of connexin43 gap junctions between neointimal smooth muscle cells. Eur J Cell Biol 2004; 83: 521–30
  • Wang L. H., Chen J. Z., Sun Y. L., Zhang F. R., Zhu J. H., Hu S. J., et al. Statins reduce connexin40 and connexin43 expression in atherosclerotic aorta of rabbits. Int J Cardiol 2005; 100: 467–75
  • Chadjichristos C. E., Matter C. M., Roth I., Sutter E., Pelli G., Luscher T. F., et al. Reduced connexin43 expression limits neointima formation after balloon distension injury in hypercholesterolemic mice. Circulation 2006; 113: 2835–43
  • Chadjichristos C. E., Roth I., Hoepfl B., van Veen T. A., Deutsch U., van Kempen M. J., et al. Increased development of atherosclerosis in mice with endothelial‐specific deletion of connexin40. Circulation 2005; 112: II–142 (abstract)

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.