439
Views
13
CrossRef citations to date
0
Altmetric
Review Article

DNA damage response and development of targeted cancer treatments

Pages 457-464 | Published online: 08 Jul 2009

References

  • Hahn W. C., Weinberg R. A. Modelling the molecular circuitry of cancer. Nat Rev Cancer 2002; 2: 331–41
  • Zhou B. B., Anderson H. J., Roberge M. Targeting DNA checkpoint kinases in cancer therapy. Cancer Biol Ther 2003; 2 Suppl 1: S16–22
  • Zhou B. B., Bartek J. Targeting the checkpoint kinases: chemosensitization versus chemoprotection. Nat Rev Cancer 2004; 4: 216–25
  • Gottesman M. M., Fojo T., Bates S. E. Multidrug resistance in cancer: role of ATP‐dependent transporters. Nat Rev Cancer 2002; 2: 48–58
  • Szakacs G., Paterson J. K., Ludwig J. A., Booth‐Genthe C., Gottesman M. M. Targeting multidrug resistance in cancer. Nat Rev Drug Discov 2006; 5: 219–34
  • Kastan M. B., Bartek J. Cell‐cycle checkpoints and cancer. Nature 2004; 432: 316–23
  • Sancar A., Lindsey‐Boltz L. A., Unsal‐Kaccmaz K., Linn S. Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu Rev Biochem 2004; 73: 39–85
  • Gasser S., Orsulic S., Brown E. J., Raulet D. H. The DNA damage pathway regulates innate immune system ligands of the NKG2D receptor. Nature 2005; 436: 1186–90
  • Gasser S., Raulet D. The DNA damage response, immunity and cancer. Semin Cancer Biol 2006; 16: 344–7
  • Gasser S., Raulet D. H. The DNA damage response arouses the immune system. Cancer Res 2006; 66: 3959–62
  • Gasser S., Raulet D. H. Activation and self‐tolerance of natural killer cells. Immunol Rev 2006; 214: 130–42
  • Raulet D. H. Roles of the NKG2D immunoreceptor and its ligands. Nat Rev Immunol 2003; 3: 781–90
  • Jamieson A. M., Diefenbach A., McMahon C. W., Xiong N., Carlyle J. R., Raulet D. H. The role of the NKG2D immunoreceptor in immune cell activation and natural killing. Immunity 2002; 17: 19–29
  • Diefenbach A., Jamieson A. M., Liu S. D., Shastri N., Raulet D. H. Ligands for the murine NKG2D receptor: expression by tumor cells and activation of NK cells and macrophages. Nat Immunol 2000; 1: 119–26
  • Nowbakht P., Ionescu M. C., Rohner A., Kalberer C. P., Rossy E., Mori L., et al. Ligands for natural killer cell‐activating receptors are expressed upon the maturation of normal myelomonocytic cells but at low levels in acute myeloid leukemias. Blood 2005; 105: 3615–22
  • Groh V., Bahram S., Bauer S., Herman A., Beauchamp M., Spies T. Cell stress‐regulated human major histocompatibility complex class I gene expressed in gastrointestinal epithelium. Proc Natl Acad Sci U S A 1996; 93: 12445–50
  • Diefenbach A., Jensen E. R., Jamieson A. M., Raulet D. H. Rae1 and H60 ligands of the NKG2D receptor stimulate tumour immunity. Nature 2001; 413: 165–71
  • Hayakawa Y., Kelly J. M., Westwood J., Darcy P. K., Diefenbach A., Raulet D. H., et al. Tumor rejection mediated by NKG2D receptor‐ligand interaction is strictly dependent on perforin. J Immunol 2002; 169: 5377–81
  • Zhou H., Luo Y., Kaplan C. D., Kruger J. A., Lee S. H., Xiang R., et al. A DNA‐based cancer vaccine enhances lymphocyte crosstalk by engaging the NKG2D receptor. Blood 2005; 107: 3251–7
  • Oppenheim D. E., Roberts S. J., Clarke S. L., Filler R., Lewis J. M., Tigelaar R. E., et al. Sustained localized expression of ligand for the activating NKG2D receptor impairs natural cytotoxicity in vivo and reduces tumor immunosurveillance. Nat Immunol 2005; 6: 928–37
  • Smyth M. J., Swann J., Cretney E., Zerafa N., Yokoyama W. M., Hayakawa Y. NKG2D function protects the host from tumor initiation. J Exp Med 2005; 202: 583–8
  • Groh V., Wu J., Yee C., Spies T. Tumour‐derived soluble MIC ligands impair expression of NKG2D and T‐cell activation. Nature 2002; 419: 734–8
  • Holdenrieder S., Stieber P., Peterfi A., Nagel D., Steinle A., Salih H. R. Soluble MICA in malignant diseases. Int J Cancer 2006; 118: 684–7
  • Raffaghello L., Prigione I., Airoldi I., Camoriano M., Levreri I., Gambini C., et al. Downregulation and/or release of NKG2D ligands as immune evasion strategy of human neuroblastoma. Neoplasia 2004; 6: 558–68
  • Salih H. R., Antropius H., Gieseke F., Lutz S. Z., Kanz L., Rammensee H. G., et al. Functional expression and release of ligands for the activating immunoreceptor NKG2D in leukemia. Blood 2003; 102: 1389–96
  • Waldhauer I., Steinle A. Proteolytic release of soluble UL16‐binding protein 2 from tumor cells. Cancer Res 2006; 66: 2520–6
  • Halazonetis T. D. Constitutively active DNA damage checkpoint pathways as the driving force for the high frequency of p53 mutations in human cancer. DNA Repair (Amst) 2004; 3: 1057–62
  • Gorgoulis V. G., Vassiliou L. V., Karakaidos P., Zacharatos P., Kotsinas A., Liloglou T., et al. Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. Nature 2005; 434: 907–13
  • Bartkova J., Horejsi Z., Koed K., Kramer A., Tort F., Zieger K., et al. DNA damage response as a candidate anti‐cancer barrier in early human tumorigenesis. Nature 2005; 434: 864–70
  • Weitzman M. D., Carson C. T., Schwartz R. A., Lilley C. E. Interactions of viruses with the cellular DNA repair machinery. DNA Repair (Amst) 2004; 3: 1165–73
  • Wallace‐Brodeur R. R., Lowe S. W. Clinical implications of p53 mutations. Cell Mol Life Sci 1999; 55: 64–75
  • Hickson I., Zhao Y., Richardson C. J., Green S. J., Martin N. M., Orr A. I., et al. Identification and characterization of a novel and specific inhibitor of the ataxia‐telangiectasia mutated kinase ATM. Cancer Res 2004; 64: 9152–9
  • Lord C. J., Garrett M. D., Ashworth A. Targeting the double‐strand DNA break repair pathway as a therapeutic strategy. Clin Cancer Res 2006; 12: 4463–8
  • Ding J., Miao Z. H., Meng L. H., Geng M. Y. Emerging cancer therapeutic opportunities target DNA‐repair systems. Trends Pharmacol Sci 2006; 27: 338–44
  • Madhusudan S., Middleton M. R. The emerging role of DNA repair proteins as predictive, prognostic and therapeutic targets in cancer. Cancer Treat Rev 2005; 31: 603–17
  • Petermann E., Caldecott K. W. Evidence that the ATR/Chk1 pathway maintains normal replication fork progression during unperturbed S phase. Cell Cycle 2006; 5: 2203–09
  • Chen Y., Sanchez Y. Chk1 in the DNA damage response: conserved roles from yeasts to mammals. DNA Repair (Amst) 2004; 3: 1025–32
  • Canman C. E. Replication checkpoint: preventing mitotic catastrophe. Curr Biol 2001; 11: R121–4
  • Liu Q., Guntuku S., Cui X. S., Matsuoka S., Cortez D., Tamai K., et al. Chk1 is an essential kinase that is regulated by Atr and required for the G(2)/M DNA damage checkpoint. Genes Dev 2000; 14: 1448–59
  • Zachos G., Rainey M. D., Gillespie D. A. Chk1‐dependent S‐M checkpoint delay in vertebrate cells is linked to maintenance of viable replication structures. Mol Cell Biol 2005; 25: 563–74
  • Zachos G., Rainey M. D., Gillespie D. A. Chk1‐deficient tumour cells are viable but exhibit multiple checkpoint and survival defects. EMBO J 2003; 22: 713–23
  • Bartek J., Lukas J. Chk1 and Chk2 kinases in checkpoint control and cancer. Cancer Cell 2003; 3: 421–9
  • Chen Z., Xiao Z., Chen J., Ng S. C., Sowin T., Sham H., et al. Human Chk1 expression is dispensable for somatic cell death and critical for sustaining G2 DNA damage checkpoint. Mol Cancer Ther 2003; 2: 543–8
  • Russell K. J., Wiens L. W., Demers G. W., Galloway D. A., Plon S. E., Groudine M. Abrogation of the G2 checkpoint results in differential radiosensitization of G1 checkpoint‐deficient and G1 checkpoint‐competent cells. Cancer Res 1995; 55: 1639–42
  • Shao R. G., Cao C. X., Shimizu T., O'Connor P. M., Kohn K. W., Pommier Y. Abrogation of an S‐phase checkpoint and potentiation of camptothecin cytotoxicity by 7‐hydroxystaurosporine (UCN‐01) in human cancer cell lines, possibly influenced by p53 function. Cancer Res 1997; 57: 4029–35
  • Bunch R. T., Eastman A. Enhancement of cisplatin‐induced cytotoxicity by 7‐hydroxystaurosporine (UCN‐01), a new G2‐checkpoint inhibitor. Clin Cancer Res 1996; 2: 791–7
  • Hsueh C. T., Kelsen D., Schwartz G. K. UCN‐01 suppresses thymidylate synthase gene expression and enhances 5‐fluorouracil‐induced apoptosis in a sequence‐dependent manner. Clin Cancer Res 1998; 4: 2201–06
  • Akinaga S., Nomura K., Gomi K., Okabe M. Enhancement of antitumor activity of mitomycin C in vitro and in vivo by UCN‐01, a selective inhibitor of protein kinase C. Cancer Chemother Pharmacol 1993; 32: 183–9
  • Wang H., Wang X., Zhou X. Y., Chen D. J., Li G. C., Iliakis G., et al. Ku affects the ataxia and Rad 3‐related/CHK1‐dependent S phase checkpoint response after camptothecin treatment. Cancer Res 2002; 62: 2483–7
  • Koniaras K., Cuddihy A. R., Christopoulos H., Hogg A., O'Connell M. J. Inhibition of Chk1‐dependent G2 DNA damage checkpoint radiosensitizes p53 mutant human cells. Oncogene 2001; 20: 7453–63
  • Nghiem P., Park P. K., Kim Y., Vaziri C., Schreiber S. L. ATR inhibition selectively sensitizes G1 checkpoint‐deficient cells to lethal premature chromatin condensation. Proc Natl Acad Sci U S A 2001; 98: 9092–7
  • Sausville E. A., Arbuck S. G., Messmann R., Headlee D., Bauer K. S., Lush R. M., et al. Phase I trial of 72‐hour continuous infusion UCN‐01 in patients with refractory neoplasms. J Clin Oncol 2001; 19: 2319–33
  • Kawabe T. G2 checkpoint abrogators as anticancer drugs. Mol Cancer Ther 2004; 3: 513–19
  • Jack M. T., Woo R. A., Hirao A., Cheung A., Mak T. W., Lee P. W. Chk2 is dispensable for p53‐mediated G1 arrest but is required for a latent p53‐mediated apoptotic response. Proc Natl Acad Sci U S A 2002; 99: 9825–9
  • Hirao A., Cheung A., Duncan G., Girard P. M., Elia A. J., Wakeham A., et al. Chk2 is a tumor suppressor that regulates apoptosis in both an ataxia telangiectasia mutated (ATM)‐dependent and an ATM‐independent manner. Mol Cell Biol 2002; 22: 6521–32
  • Takai H., Naka K., Okada Y., Watanabe M., Harada N., Saito S., et al. Chk2‐deficient mice exhibit radioresistance and defective p53‐mediated transcription. EMBO J 2002; 21: 5195–205
  • Hirao A., Kong Y. Y., Matsuoka S., Wakeham A., Ruland J., Yoshida H., et al. DNA damage‐induced activation of p53 by the checkpoint kinase Chk2. Science 2000; 287: 1824–7
  • Lukas C., Bartkova J., Latella L., Falck J., Mailand N., Schroeder T., et al. DNA damage‐activated kinase Chk2 is independent of proliferation or differentiation yet correlates with tissue biology. Cancer Res 2001; 61: 4990–3
  • Komarov P. G., Komarova E. A., Kondratov R. V., Christov‐Tselkov K., Coon J. S., Chernov M. V., et al. A chemical inhibitor of p53 that protects mice from the side effects of cancer therapy. Science 1999; 285: 1733–7
  • Sorensen C. S., Syljuasen R. G., Falck J., Schroeder T., Ronnstrand L., Khanna K. K., et al. Chk1 regulates the S phase checkpoint by coupling the physiological turnover and ionizing radiation‐induced accelerated proteolysis of Cdc25A. Cancer Cell 2003; 3: 247–58
  • Ringshausen I., O'Shea C. C., Finch A. J., Swigart L. B., Evan G. I. Mdm2 is critically and continuously required to suppress lethal p53 activity in vivo. Cancer Cell 2006; 10: 501–14
  • Vassilev L. T., Vu B. T., Graves B., Carvajal D., Podlaski F., Filipovic Z., et al. In vivo activation of the p53 pathway by small‐molecule antagonists of MDM2. Science 2004; 303: 844–8
  • Issaeva N., Bozko P., Enge M., Protopopova M., Verhoef L. G., Masucci M., et al. Small molecule RITA binds to p53, blocks p53‐HDM‐2 interaction and activates p53 function in tumors. Nat Med 2004; 10: 1321–8
  • Yang Y., Ludwig R. L., Jensen J. P., Pierre S. A., Medaglia M. V., Davydov I. V., et al. Small molecule inhibitors of HDM2 ubiquitin ligase activity stabilize and activate p53 in cells. Cancer Cell 2005; 7: 547–59
  • Klein C., Vassilev L. T. Targeting the p53‐MDM2 interaction to treat cancer. Br J Cancer 2004; 91: 1415–19
  • Coll‐Mulet L., Iglesias‐Serret D., Santidrian A. F., Cosialls A. M., de Frias M., Castano E., et al. MDM2 antagonists activate p53 and synergize with genotoxic drugs in B‐cell chronic lymphocytic leukemia cells. Blood 2006; 107: 4109–14
  • Carvajal D., Tovar C., Yang H., Vu B. T., Heimbrook D. C., Vassilev L. T. Activation of p53 by MDM2 antagonists can protect proliferating cells from mitotic inhibitors. Cancer Res 2005; 65: 1918–24
  • Tovar C., Rosinski J., Filipovic Z., Higgins B., Kolinsky K., Hilton H., et al. Small‐molecule MDM2 antagonists reveal aberrant p53 signaling in cancer: implications for therapy. Proc Natl Acad Sci U S A 2006; 103((6))1888–93
  • Secchiero P., Barbarotto E., Tiribelli M., Zerbinati C., di Iasio M. G., Gonelli A., et al. Functional integrity of the p53‐mediated apoptotic pathway induced by the nongenotoxic agent nutlin‐3 in B‐cell chronic lymphocytic leukemia (B‐CLL). Blood 2006; 107: 4122–9
  • Mendrysa S. M., McElwee M. K., Michalowski J., O'Leary K. A., Young K. M., Perry M. E. mdm2 Is critical for inhibition of p53 during lymphopoiesis and the response to ionizing irradiation. Mol Cell Biol 2003; 23: 462–72
  • Xiong S., Van Pelt C. S., Elizondo‐Fraire A. C., Liu G., Lozano G. Synergistic roles of Mdm2 and Mdm4 for p53 inhibition in central nervous system development. Proc Natl Acad Sci U S A 2006; 103: 3226–31
  • Francoz S., Froment P., Bogaerts S., De Clercq S., Maetens M., Doumont G., et al. Mdm4 and Mdm2 cooperate to inhibit p53 activity in proliferating and quiescent cells in vivo. Proc Natl Acad Sci U S A 2006; 103: 3232–7
  • Boesten L. S., Zadelaar S. M., De Clercq S., Francoz S., van Nieuwkoop A., Biessen E. A., et al. Mdm2, but not Mdm4, protects terminally differentiated smooth muscle cells from p53‐mediated caspase‐3‐independent cell death. Cell Death Differ 2006; 13: 2089–98
  • Syljuasen R. G., Sorensen C. S., Hansen L. T., Fugger K., Lundin C., Johansson F., et al. Inhibition of human Chk1 causes increased initiation of DNA replication, phosphorylation of ATR targets, and DNA breakage. Mol Cell Biol 2005; 25: 3553–62
  • Toledo F., Wahl G. M. Regulating the p53 pathway: in vitro hypotheses, in vivo veritas. Nat Rev 2006; 6: 909–23
  • Zagozdzon R., Golab J. Immunomodulation by anticancer chemotherapy: more is not always better (review). Int J Oncology 2001; 18: 417–24
  • DiPaola R. S., Durivage H. J., Kamen B. A. High time for low‐dose prospective clinical trials. Cancer 2003; 98: 1559–61

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.