4,385
Views
131
CrossRef citations to date
0
Altmetric
Review Article

Calcium and phosphate homeostasis: Concerted interplay of new regulators

, , &
Pages 82-91 | Published online: 08 Jul 2009

References

  • Hoenderop J. G., van Leeuwen J. P., van der Eerden B. C., Kersten F. F., van der Kemp A. W., Merillat A. M., et al. Renal Ca2+ wasting, hyperabsorption, and reduced bone thickness in mice lacking TRPV5. J Clin Invest 2003; 112: 1906–14
  • Takeda E., Yamamoto H., Nashiki K., Sato T., Arai H., Taketani Y. Inorganic phosphate homeostasis and the role of dietary phosphorus. J Cell Mol Med 2004; 8: 191–200
  • Hurwitz S. Homeostatic control of plasma calcium concentration. Crit Rev Biochem Mol Biol 1996; 31: 41–100
  • Torres P. U., Prie D., Molina‐Bletry V., Beck L., Silve C., Friedlander G. Klotho: An antiaging protein involved in mineral and vitamin D metabolism. Kidney Int 2007; 71: 730–7
  • Shimada T., Hasegawa H., Yamazaki Y., Muto T., Hino R., Takeuchi Y., et al. FGF‐23 is a potent regulator of vitamin D metabolism and phosphate homeostasis. J Bone Miner Res 2004; 19: 429–35
  • Capuano P., Radanovic T., Wagner C. A., Bacic D., Kato S., Uchiyama Y., et al. Intestinal and renal adaptation to a low‐Pi diet of type II NaPi cotransporters in vitamin D receptor‐ and 1alphaOHase‐deficient mice. Am J Physiol Cell Physiol 2005; 288: C429–34
  • van Abel M., Hoenderop J. G., van der Kemp A. W., van Leeuwen J. P., Bindels R. J. Regulation of the epithelial Ca2+ channels in small intestine as studied by quantitative mRNA detection. Am J Physiol Gastrointest Liver Physiol 2003; 285: G78–85
  • Slatopolsky E., Delmez J. A. Pathogenesis of secondary hyperparathyroidism. Am J Kidney Dis 1994; 23: 229–36
  • Radanovic T., Wagner C. A., Murer H., Biber J. Regulation of intestinal phosphate transport. I. Segmental expression and adaptation to low‐Pi diet of the type IIb Na+‐Pi cotransporter in mouse small intestine. Am J Physiol Gastrointest Liver Physiol 2005; 288: G496–500
  • Hoenderop J. G., Nilius B., Bindels R. J. Calcium absorption across epithelia. Physiol Rev 2005; 85: 373–422
  • Murer H., Hernando N., Forster I., Biber J. Proximal tubular phosphate reabsorption: molecular mechanisms. Physiol Rev 2000; 80: 1373–409
  • Peng J. B., Chen X. Z., Berger U. V., Vassilev P. M., Tsukaguchi H., Brown E. M., et al. Molecular cloning and characterization of a channel‐like transporter mediating intestinal calcium absorption. J Biol Chem 1999; 274: 22739–46
  • Hoenderop J. G., Bindels R. J. Epithelial Ca2+ and Mg2+ channels in health and disease. J Am Soc Nephrol 2005; 16: 15–26
  • Hilfiker H., Hattenhauer O., Traebert M., Forster I., Murer H., Biber J. Characterization of a murine type II sodium‐phosphate cotransporter expressed in mammalian small intestine. Proc Natl Acad Sci U S A 1998; 95: 14564–9
  • Collins J. F., Ghishan F. K. Molecular cloning, functional expression, tissue distribution, and in situ hybridization of the renal sodium phosphate (Na+/Pi) transporter in the control and hypophosphatemic mouse. FASEB J 1994; 8: 862–8
  • Hernando N., Gisler S. M., Pribanic S., Deliot N., Capuano P., Wagner C. A., et al. NaPi‐IIa and interacting partners. J Physiol 2005; 567: 21–6
  • Forster I. C., Hernando N., Biber J., Murer H. Proximal tubular handling of phosphate: A molecular perspective. Kidney Int 2006; 70: 1548–59
  • Chang W., Pratt S., Chen T. H., Nemeth E., Huang Z., Shoback D. Coupling of calcium receptors to inositol phosphate and cyclic AMP generation in mammalian cells and Xenopus laevis oocytes and immunodetection of receptor protein by region‐specific antipeptide antisera. J Bone Miner Res 1998; 13: 570–80
  • Riccardi D., Park J., Lee W. S., Gamba G., Brown E. M., Hebert S. C. Cloning and functional expression of a rat kidney extracellular calcium/polyvalent cation‐sensing receptor. Proc Natl Acad Sci U S A 1995; 92: 131–5
  • Brown E. M., Gamba G., Riccardi D., Lombardi M., Butters R., Kifor O., et al. Cloning and characterization of an extracellular Ca2+‐sensing receptor from bovine parathyroid. Nature 1993; 366: 575–80
  • Muller D., Hoenderop J. G., Merkx G. F., van Os C. H., Bindels R. J. Gene structure and chromosomal mapping of human epithelial calcium channel. Biochem Biophys Res Commun 2000; 275: 47–52
  • Weber K., Erben R. G., Rump A., Adamski J. Gene structure and regulation of the murine epithelial calcium channels ECaC1 and 2. Biochem Biophys Res Commun 2001; 289: 1287–94
  • Hoenderop J. G., Dardenne O., Van Abel M., Van Der Kemp A. W., Van Os C. H., St Arnaud R., et al. Modulation of renal Ca2+ transport protein genes by dietary Ca2+ and 1,25‐dihydroxyvitamin D3 in 25‐hydroxyvitamin D3‐1alpha‐hydroxylase knockout mice. FASEB J 2002; 16: 1398–406
  • Hoenderop J. G., Muller D., Van Der Kemp A. W., Hartog A., Suzuki M., Ishibashi K., et al. Calcitriol controls the epithelial calcium channel in kidney. J Am Soc Nephrol 2001; 12: 1342–9
  • Fudge N. J., Kovacs C. S. Physiological studies in heterozygous calcium sensing receptor (CaSR) gene‐ablated mice confirm that the CaSR regulates calcitonin release in vivo. BMC Physiol 2004; 4: 5
  • Prince R. L. Counterpoint: estrogen effects on calcitropic hormones and calcium homeostasis. Endocr Rev 1994; 15: 301–9
  • Young M. M., Nordin B. E. The effect of the natural and artificial menopause on bone density and fracture. Proc R Soc Med 1969; 62: 242
  • Van Abel M., Hoenderop J. G., Dardenne O., St Arnaud R., Van Os C. H., Van Leeuwen H. J., et al. 1,25‐dihydroxyvitamin D3‐independent stimulatory effect of estrogen on the expression of ECaC1 in the kidney. J Am Soc Nephrol 2002; 13: 2102–9
  • van Abel M., Hoenderop J. G., van der Kemp A. W., Friedlaender M. M., van Leeuwen J. P., Bindels R. J. Coordinated control of renal Ca2+ transport proteins by parathyroid hormone. Kidney Int 2005; 68: 1708–21
  • Picard N., Van Abel M., Campone C., Seiler M., Bloch‐Faure M., Hoenderop J. G., et al. Tissue kallikrein‐deficient mice display a defect in renal tubular calcium absorption. J Am Soc Nephrol 2005; 16: 3602–10
  • Gkika D., Topala C. N., Chang Q., Picard N., Thebault S., Houillier P., et al. Tissue kallikrein stimulates Ca2+ reabsorption via PKC‐dependent plasma membrane accumulation of TRPV5. EMBO J 2006; 25: 4707–16
  • Kuro‐o M., Matsumura Y., Aizawa H., Kawaguchi H., Suga T., Utsugi T., et al. Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature 1997; 390: 45–51
  • Chang Q., Hoefs S., van der Kemp A. W., Topala C. N., Bindels R. J., Hoenderop J. G. The beta‐glucuronidase klotho hydrolyzes and activates the TRPV5 channel. Science 2005; 310: 490–3
  • Imura A., Iwano A., Tohyama O., Tsuji Y., Nozaki K., Hashimoto N., et al. Secreted Klotho protein in sera and CSF: implication for post‐translational cleavage in release of Klotho protein from cell membrane. FEBS Lett 2004; 565: 143–7
  • Imura A., Tsuji Y., Murata M., Maeda R., Kubota K., Iwano A., et al. alpha‐Klotho as a regulator of calcium homeostasis. Science 2007; 316: 1615–8
  • Katai K., Miyamoto K., Kishida S., Segawa H., Nii T., Tanaka H., et al. Regulation of intestinal Na+‐dependent phosphate co‐transporters by a low‐phosphate diet and 1,25‐dihydroxyvitamin D3. Biochem J 1999; 343(Pt 3)705–12
  • Bacic D., Lehir M., Biber J., Kaissling B., Murer H., Wagner C. A. The renal Na+/phosphate cotransporter NaPi‐IIa is internalized via the receptor‐mediated endocytic route in response to parathyroid hormone. Kidney Int 2006; 69: 495–503
  • Shimada T., Kakitani M., Yamazaki Y., Hasegawa H., Takeuchi Y., Fujita T., et al. Targeted ablation of Fgf23 demonstrates an essential physiological role of FGF23 in phosphate and vitamin D metabolism. J Clin Invest 2004; 113: 561–8
  • Riminucci M., Collins M. T., Fedarko N. S., Cherman N., Corsi A., White K. E., et al. FGF‐23 in fibrous dysplasia of bone and its relationship to renal phosphate wasting. J Clin Invest 2003; 112: 683–92
  • Berndt T. J., Schiavi S., Kumar R. "Phosphatonins" and the regulation of phosphorus homeostasis. Am J Physiol Renal Physiol 2005; 289: F1170–82
  • ADHR Consortium. Autosomal dominant hypophosphataemic rickets is associated with mutations in FGF23. Nat Genet 2000; 26: 345–8
  • White K. E., Carn G., Lorenz‐Depiereux B., Benet‐Pages A., Strom T. M., Econs M. J. Autosomal‐dominant hypophosphatemic rickets (ADHR) mutations stabilize FGF‐23. Kidney Int 2001; 60: 2079–86
  • Benet‐Pages A., Orlik P., Strom T. M., Lorenz‐Depiereux B. An FGF23 missense mutation causes familial tumoral calcinosis with hyperphosphatemia. Hum Mol Genet 2005; 14: 385–90
  • Larsson T., Yu X., Davis S. I., Draman M. S., Mooney S. D., Cullen M. J., et al. A novel recessive mutation in fibroblast growth factor‐23 causes familial tumoral calcinosis. J Clin Endocrinol Metab 2005; 90: 2424–7
  • Masuyama R., Stockmans I., Torrekens S., Van Looveren R., Maes C., Carmeliet P., et al. Vitamin D receptor in chondrocytes promotes osteoclastogenesis and regulates FGF23 production in osteoblasts. J Clin Invest 2006; 116: 3150–9
  • Mirams M., Robinson B. G., Mason R. S., Nelson A. E. Bone as a source of FGF23: regulation by phosphate?. Bone 2004; 35: 1192–9
  • Yu X., Ibrahimi O. A., Goetz R., Zhang F., Davis S. I., Garringer H. J., et al. Analysis of the biochemical mechanisms for the endocrine actions of fibroblast growth factor‐23. Endocrinology 2005; 146: 4647–56
  • Urakawa I., Yamazaki Y., Shimada T., Iijima K., Hasegawa H., Okawa K., et al. Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature 2006; 444: 770–4
  • Sitara D., Razzaque M. S., Hesse M., Yoganathan S., Taguchi T., Erben R. G., et al. Homozygous ablation of fibroblast growth factor‐23 results in hyperphosphatemia and impaired skeletogenesis, and reverses hypophosphatemia in Phex‐deficient mice. Matrix Biol 2004; 23: 421–32
  • Kurosu H., Ogawa Y., Miyoshi M., Yamamoto M., Nandi A., Rosenblatt K. P., et al. Regulation of fibroblast growth factor‐23 signaling by klotho. J Biol Chem 2006; 281: 6120–3
  • Drueke T. B., Prie D. Klotho spins the thread of life—what does Klotho do to the receptors of fibroblast growth factor‐23 (FGF23)?. Nephrol Dial Transplant 2007; 22: 1524–6
  • Ogawa Y., Kurosu H., Yamamoto M., Nandi A., Rosenblatt K. P., Goetz R., et al. betaKlotho is required for metabolic activity of fibroblast growth factor 21. Proc Natl Acad Sci U S A 2007; 104: 7432–7
  • Kharitonenkov A., Shiyanova T. L., Koester A., Ford A. M., Micanovic R., Galbreath E. J., et al. FGF‐21 as a novel metabolic regulator. J Clin Invest 2005; 115: 1627–35
  • Powers C. J., McLeskey S. W., Wellstein A. Fibroblast growth factors, their receptors and signaling. Endocr Relat Cancer 2000; 7: 165–97
  • Carpenter T. O., Ellis B. K., Insogna K. L., Philbrick W. M., Sterpka J., Shimkets R. Fibroblast growth factor 7: an inhibitor of phosphate transport derived from oncogenic osteomalacia‐causing tumors. J Clin Endocrinol Metab 2005; 90: 1012–20
  • Nemeth E. F., Steffey M. E., Hammerland L. G., Hung B. C., Van Wagenen B. C., DelMar E. G., et al. Calcimimetics with potent and selective activity on the parathyroid calcium receptor. Proc Natl Acad Sci U S A 1998; 95: 4040–5
  • Lloyd S. E., Pearce S. H., Fisher S. E., Steinmeyer K., Schwappach B., Scheinman S. J., et al. A common molecular basis for three inherited kidney stone diseases. Nature 1996; 379: 445–9
  • Clark J. Y., Thompson I. M., Optenberg S. A. Economic impact of urolithiasis in the United States. J Urol 1995; 154: 2020–4
  • Stamatelou K. K., Francis M. E., Jones C. A., Nyberg L. M., Curhan G. C. Time trends in reported prevalence of kidney stones in the United States: 1976–1994. Kidney Int 2003; 63: 1817–23
  • Pearle M. S., Calhoun E. A., Curhan G. C. Urologic diseases in America project: urolithiasis. J Urol 2005; 173: 848–57
  • Curhan G. C., Willett W. C., Rimm E. B., Stampfer M. J. Family history and risk of kidney stones. J Am Soc Nephrol 1997; 8: 1568–73
  • Bianco S. D., Peng J. B., Takanaga H., Suzuki Y., Crescenzi A., Kos C. H., et al. Marked disturbance of calcium homeostasis in mice with targeted disruption of the Trpv6 calcium channel gene. J Bone Miner Res 2007; 22: 274–85
  • Muller D., Hoenderop J. G., Vennekens R., Eggert P., Harangi F., Mehes K., et al. Epithelial Ca2+ channel (ECAC1) in autosomal dominant idiopathic hypercalciuria. Nephrol Dial Transplant 2002; 17: 1614–20
  • Akey J. M., Swanson W. J., Madeoy J., Eberle M., Shriver M. D. TRPV6 exhibits unusual patterns of polymorphism and divergence in worldwide populations. Hum Mol Genet 2006; 15: 2106–13
  • Econs M. J., McEnery P. T. Autosomal dominant hypophosphatemic rickets/osteomalacia: clinical characterization of a novel renal phosphate‐wasting disorder. J Clin Endocrinol Metab 1997; 82: 674–81
  • Econs M. J., Drezner M. K. Tumor‐induced osteomalacia—unveiling a new hormone. N Engl J Med 1994; 330: 1679–81
  • Cai Q., Hodgson S. F., Kao P. C., Lennon V. A., Klee G. G., Zinsmiester A. R., et al. Brief report: inhibition of renal phosphate transport by a tumor product in a patient with oncogenic osteomalacia. N Engl J Med 1994; 330: 1645–9
  • Sabbagh Y., Jones A. O., Tenenhouse H. S. PHEXdb, a locus‐specific database for mutations causing X‐linked hypophosphatemia. Hum Mutat 2000; 16: 1–6
  • Tieder M., Modai D., Samuel R., Arie R., Halabe A., Bab I., et al. Hereditary hypophosphatemic rickets with hypercalciuria. N Engl J Med 1985; 312: 611–7
  • Hsu Y. J., Hoenderop J. G., Bindels R. J. TRP channels in kidney disease. Biochim Biophys Acta 2007; 1772: 928–36
  • Shigematsu T., Kazama J. J., Yamashita T., Fukumoto S., Hosoya T., Gejyo F., et al. Possible involvement of circulating fibroblast growth factor 23 in the development of secondary hyperparathyroidism associated with renal insufficiency. Am J Kidney Dis 2004; 44: 250–6
  • Pande S., Ritter C. S., Rothstein M., Wiesen K., Vassiliadis J., Kumar R., et al. FGF‐23 and sFRP‐4 in chronic kidney disease and post‐renal transplantation. Nephron Physiol 2006; 104: 23–32
  • Miyamoto K., Ito M., Segawa H., Kuwahata M. Molecular targets of hyperphosphataemia in chronic renal failure. Nephrol Dial Transplant 2003; 18(Suppl 3)iii79–80
  • Locatelli F., Cannata‐Andia J. B., Drueke T. B., Horl W. H., Fouque D., Heimburger O., et al. Management of disturbances of calcium and phosphate metabolism in chronic renal insufficiency, with emphasis on the control of hyperphosphataemia. Nephrol Dial Transplant 2002; 17: 723–31
  • Fliser D., Kollerits B., Neyer U., Ankerst D. P., Lhotta K., Lingenhel A., et al. Fibroblast Growth Factor 23 (FGF23) Predicts Progression of Chronic Kidney Disease: The Mild to Moderate Kidney Disease (MMKD) Study. J Am Soc Nephrol 2007; 18: 2600–8
  • Renkema K. Y., Nijenhuis T., van der Eerden B. C., van der Kemp A. W., Weinans H., van Leeuwen J. P., et al. Hypervitaminosis D mediates compensatory Ca2+ hyperabsorption in TRPV5 knockout mice. J Am Soc Nephrol 2005; 16: 3188–95
  • Gkika D., Hsu Y. J., van der Kemp A. W., Christakos S., Bindels R. J., Hoenderop J. G. Critical role of the epithelial Ca2+ channel TRPV5 in active Ca2+ reabsorption as revealed by TRPV5/calbindin‐D28K knockout mice. J Am Soc Nephrol 2006; 17: 3020–7
  • Lee G. S., Jeung E. B. Uterine TRPV6 expression during estrous cycle and pregnancy in a mouse model. Am J Physiol Endocrinol Metab 2007; 293: E132–8
  • Razzaque M. S., Sitara D., Taguchi T., St‐Arnaud R., Lanske B. Premature aging‐like phenotype in fibroblast growth factor 23 null mice is a vitamin D‐mediated process. FASEB J 2006; 20: 720–2
  • Sitara D., Razzaque M. S., St Arnaud R., Huang W., Taguchi T., Erben R. G., et al. Genetic ablation of vitamin D activation pathway reverses biochemical and skeletal anomalies in Fgf‐23‐null animals. Am J Pathol 2006; 169: 2161–70
  • Erben R. G., Soegiarto D. W., Weber K., Zeitz U., Lieberherr M., Gniadecki R., et al. Deletion of deoxyribonucleic acid binding domain of the vitamin D receptor abrogates genomic and nongenomic functions of vitamin D. Mol Endocrinol 2002; 16: 1524–37
  • Hesse M., Frohlich L. F., Zeitz U., Lanske B., Erben R. G. Ablation of vitamin D signaling rescues bone, mineral, and glucose homeostasis in Fgf‐23 deficient mice. Matrix Biol 2007; 26: 75–84
  • Saito H., Maeda A., Ohtomo S., Hirata M., Kusano K., Kato S., et al. Circulating FGF‐23 is regulated by 1alpha,25‐dihydroxyvitamin D3 and phosphorus in vivo. J Biol Chem 2005; 280: 2543–9
  • Barthel T. K., Mathern D. R., Whitfield G. K., Haussler C. A., Hopper H. A 4th., Hsieh J. C., et al. 1,25‐Dihydroxyvitamin D3/VDR‐mediated induction of FGF23 as well as transcriptional control of other bone anabolic and catabolic genes that orchestrate the regulation of phosphate and calcium mineral metabolism. J Steroid Biochem Mol Biol 2007; 103: 381–8

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.