472
Views
21
CrossRef citations to date
0
Altmetric
Trends in Molecular Medicine

Molecular genetics of the stress‐responsive adrenocortical axis

Pages 139-148 | Published online: 08 Jul 2009

References

  • Rosmond R., Bjorntorp P. Blood pressure in relation to obesity, insulin and the hypothalamic‐pituitary‐adrenal axis in Swedish men. J Hypertens 1998; 16: 1721–6
  • Kendler K. S., Karkowski L. M., Prescott C. A. Causal relationship between stressful life events and the onset of major depression. Am J Psychiatry 1999; 156: 837–41
  • Kendler K. S., Gardner C. O., Neale M. C., Prescott C. A. Genetic risk factors for major depression in men and women: similar or different heritabilities and same or partly distinct genes?. Psychol Med 2001; 31: 605–16
  • Sternberg E. M. Emotions and disease: from balance of humors to balance of molecules. Nat Med 1997; 3: 264–7
  • Lupien S. J., de Leon M., de Santi S., Convit A., Tarshish C., Nair N. P., et al. Cortisol levels during human aging predict hippocampal atrophy and memory deficits. [See comments]. Nat Neurosci 1998; 1: 69–73, Erratum in: Nat Neurosci. 1998;1:329
  • Piazza P. V., Le Moal M. The role of stress in drug self‐administration. Trends Pharmacol Sci 1998; 19: 67–74
  • Mathers C. D., Loncar D. Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med 2006; 3: e442
  • Ogden C. L., Carroll M. D., Curtin L. R., McDowell M. A., Tabak C. J., Flegal K. M. Prevalence of overweight and obesity in the United States, 1999–2004. JAMA 2006; 295: 1549–55
  • Selye H. The Stress of Life. McGraw‐Hill Book Company, New York 1956
  • Selye H. Thymus and adrenals in the response of the organism to injuries and intoxications. Br J Exp Pathol 1936; 17: 234–48
  • Selye H. Forty years of stress research: principal remaining problems and misconceptions. Can Med Assoc J 1976; 115: 53–6
  • McEwen B. S., Stellar E. Stress and the individual. Mechanisms leading to disease. Arch Intern Med 1993; 153: 2093–101
  • McEwen B. S., Wingfield J. C. The concept of allostasis in biology and biomedicine. Horm Behav 2003; 43: 2–15
  • McEwen B. S. Mood disorders and allostatic load. Biol Psychiatry 2003; 54: 200–7
  • McEwen B. S. Protection and damage from acute and chronic stress: allostasis and allostatic overload and relevance to the pathophysiology of psychiatric disorders. Ann N Y Acad Sci 2004; 1032: 1–7
  • McEwen B. S. Glucocorticoids, depression, and mood disorders: Structural remodeling in the brain. Metabolism 2005; 54: 20–3
  • Fuchs E., Flugge G. Stress, glucocorticoids and structural plasticity of the hippocampus. Neurosci Biobehav Rev 1998; 23: 295–300
  • Sapolsky R. M. Glucocorticoids and hippocampal atrophy in neuropsychiatric disorders. Arch Gen Psychiatry 2000; 57: 925–35
  • Reiche E. M., Nunes S. O., Morimoto H. K. Stress, depression, the immune system, and cancer. Lancet Oncol 2004; 5: 617–25
  • Pecoraro N., Dallman M. F., Warne J. P., Ginsberg A. B., Laugero K. D., la Fleur S. E., et al. From Malthus to motive: how the HPA axis engineers the phenotype, yoking needs to wants. Prog Neurobiol 2006; 79: 247–340
  • Tsigos C., Chrousos G. P. Hypothalamic‐pituitary‐adrenal axis, neuroendocrine factors and stress. J Psychosom Res 2002; 53: 865–71
  • Young E. A., Abelson J., Lightman S. L. Cortisol pulsatility and its role in stress regulation and health. Front Neuroendocrinol 2004; 25: 69–76
  • Kaneko M., Hiroshige T., Shinsako J., Dallman M. F. Diurnal changes in amplification of hormone rhythms in the adrenocortical system. Am J Physiol 1980; 239: R309–16
  • Dallman M. F., Akana S. F., Cascio C. S., Darlington D. N., Jacobson L., Levin N. Regulation of ACTH secretion: variations on a theme of B. Recent Prog Horm Res 1987; 43: 113–73
  • Bornstein S. R., Chrousos G. P. Clinical review 104: Adrenocorticotropin (ACTH)‐ and non‐ACTH‐mediated regulation of the adrenal cortex: neural and immune inputs. J Clin Endocrinol Metab 1999; 84: 1729–36
  • Buijs R. M., Hermes M. H., Kalsbeek A. The suprachiasmatic nucleus‐paraventricular nucleus interactions: a bridge to the neuroendocrine and autonomic nervous system. Prog Brain Res 1998; 119: 365–82
  • Dallman M. F., Engeland W. C., Rose J. C., Wilkinson C. W., Shinsako J., Siedenburg F. Nycthemeral rhythm in adrenal responsiveness to ACTH. Am J Physiol 1978; 235: R210–8
  • Jasper M. S., Engeland W. C. Splanchnic neural activity modulates ultradian and circadian rhythms in adrenocortical secretion in awake rats. Neuroendocrinology 1994; 59: 97–109
  • Sage D., Maurel D., Bosler O. Corticosterone‐dependent driving influence of the suprachiasmatic nucleus on adrenal sensitivity to ACTH. Am J Physiol Endocrinol Metab 2002; 282: E458–65
  • Armario A. The hypothalamic‐pituitary‐adrenal axis: what can it tell us about stressors?. CNS Neurol Disord Drug Targets 2006; 5: 485–501
  • Chrousos G. P. Ultradian, circadian, and stress‐related hypothalamic‐pituitary‐adrenal axis activity—a dynamic digital‐to‐analog modulation. Endocrinology 1998; 139: 437–40
  • Aguilera G., Kiss A., Lu A., Camacho C. Regulation of adrenal steroidogenesis during chronic stress. Endocr Res 1996; 22: 433–43
  • Ulrich‐Lai Y. M., Figueiredo H. F., Ostrander M. M., Choi D. C., Engeland W. C., Herman J. P. Chronic stress induces adrenal hyperplasia and hypertrophy in a subregion‐specific manner. Am J Physiol Endocrinol Metab 2006; 291: E965–73
  • Zelena D., Mergl Z., Foldes A., Kovacs K. J., Toth Z., Makara G. B. Role of hypothalamic inputs in maintaining pituitary‐adrenal responsiveness in repeated restraint. Am J Physiol Endocrinol Metab 2003; 285: E1110–7
  • Bicknell A. B. Identification of the adrenal protease that cleaves pro‐gamma‐MSH: the dawning of a new era in adrenal physiology?. J Endocrinol 2002; 172: 405–10
  • Willenberg H. S., Bornstein S. R., Dumser T., Ehrhart‐Bornstein M., Barocka A., Chrousos G. P., et al. Morphological changes in adrenals from victims of suicide in relation to altered apoptosis. Endocr Res 1998; 24: 963–7
  • Huizenga N. A., Koper J. W., de Lange P., Pols H. A., Stolk R. P., Grobbee D. E., et al. Interperson variability but intraperson stability of baseline plasma cortisol concentrations, and its relation to feedback sensitivity of the hypothalamo‐pituitary‐adrenal axis to a low dose of dexamethasone in elderly individuals. J Clin Endocrinol Metab 1998; 83: 47–54
  • Kirschbaum C., Wust S., Faig H. G., Hellhammer D. H. Heritability of cortisol responses to human corticotropin‐releasing hormone, ergometry, and psychological stress in humans. J Clin Endocrinol Metab 1992; 75: 1526–30
  • Andrew R., Phillips D. I., Walker B. R. Obesity and gender influence cortisol secretion and metabolism in man. J Clin Endocrinol Metab 1998; 83: 1806–9
  • Bergendahl M., Iranmanesh A., Mulligan T., Veldhuis J. D. Impact of age on cortisol secretory dynamics basally and as driven by nutrient‐withdrawal stress. J Clin Endocrinol Metab 2000; 85: 2203–14
  • Van Cauter E., Leproult R., Kupfer D. J. Effects of gender and age on the levels and circadian rhythmicity of plasma cortisol. J Clin Endocrinol Metab 1996; 81: 2468–73
  • Kendler K. S. The diagnostic validity of melancholic major depression in a population‐based sample of female twins. Arch Gen Psychiatry 1997; 54: 299–304
  • Fergusson D. M., Horwood L. J. Vulnerability to life events exposure. Psychol Med 1987; 17: 739–49
  • Bartels M., Van den Berg M., Sluyter F., Boomsma D. I., de Geus E. J. Heritability of cortisol levels: review and simultaneous analysis of twin studies. Psychoneuroendocrinology 2003; 28: 121–37
  • Wust S., Federenko I. S., van Rossum E. F., Koper J. W., Kumsta R., Entringer S., et al. A psychobiological perspective on genetic determinants of hypothalamus‐pituitary‐adrenal axis activity. Ann N Y Acad Sci 2004; 1032: 52–62
  • Feitosa M. F., Rice T., Rosmond R., Borecki I. B., An P., Gagnon J., et al. A genetic study of cortisol measured before and after endurance training: the HERITAGE Family Study. Metabolism 2002; 51: 360–5
  • Armario A., Gavalda A., Marti J. Comparison of the behavioural and endocrine response to forced swimming stress in five inbred strains of rats. Psychoneuroendocrinology 1995; 20: 879–90
  • Sarrieau A., Chaouloff F., Lemaire V., Mormede P. Comparison of the neuroendocrine responses to stress in outbred, inbred and F1 hybrid rats. Life Sci 1998; 63: 87–96
  • Marissal‐Arvy N., Mormede P., Sarrieau A. Strain differences in corticosteroid receptor efficiencies and regulation in Brown Norway and Fischer 344 rats. J Neuroendocrinol 1999; 11: 267–73
  • Redei E., Pare W. P., Aird F., Kluczynski J. Strain differences in hypothalamic‐pituitary‐adrenal activity and stress ulcer. Am J Physiol 1994; 266: R353–60
  • Cui Z. H., Ikeda K., Kawakami K., Gonda T., Nabika T., Masuda J. Exaggerated response to restraint stress in rats congenic for the chromosome 1 blood pressure quantitative trait locus. Clin Exp Pharmacol Physiol 2003; 30: 464–9
  • Buitenhuis A. J., Rodenburg T. B., van Hierden Y. M., Siwek M., Cornelissen S. J., Nieuwland M. G., et al. Mapping quantitative trait loci affecting feather pecking behavior and stress response in laying hens. Poult Sci 2003; 82: 1215–22, Erratum in: Poult Sci. 2006;85:1115–6
  • Desautes C., Bidanelt J. P., Milant D., Iannuccelli N., Amigues Y., Bourgeois F., et al. Genetic linkage mapping of quantitative trait loci for behavioral and neuroendocrine stress response traits in pigs. J Anim Sci 2002; 80: 2276–85
  • Roberts A. J., Phillips T. J., Belknap J. K., Finn D. A., Keith L. D. Genetic analysis of the corticosterone response to ethanol in BXD recombinant inbred mice. Behav Neurosci 1995; 109: 1199–208
  • Kurina L. M., Weiss L. A., Graves S. W., Parry R., Williams G. H., Abney M., et al. Sex differences in the genetic basis of morning serum cortisol levels: genome‐wide screen identifies two novel loci specific to women. J Clin Endocrinol Metab 2005; 90: 4747–52
  • Ober C., Abney M., McPeek M. S. The genetic dissection of complex traits in a founder population. Am J Hum Genet 2001; 69: 1068–79
  • Ukkola O., Rankinen T., Gagnon J., Leon A. S., Skinner J. S., Wilmore J. H., et al. A genome‐wide linkage scan for steroids and SHBG levels in black and white families: the HERITAGE Family Study. J Clin Endocrinol Metab 2002; 87: 3708–20
  • Harper J. M., Galecki A. T., Burke D. T., Pinkosky S. L., Miller R. A. Quantitative trait loci for insulin‐like growth factor I, leptin, thyroxine, and corticosterone in genetically heterogeneous mice. Physiol Genomics 2003; 15: 44–51
  • Potenza M. N., Brodkin E. S., Joe B., Luo X., Remmers E. F., Wilder R. L., et al. Genomic regions controlling corticosterone levels in rats. Biol Psychiatry 2004; 55: 634–41
  • Solberg L. C., Baum A. E., Ahmadiyeh N., Shimomura K., Li R., Turek F. W., et al. Genetic analysis of the stress‐responsive adrenocortical axis. Physiol Genomics 2006; 27: 362–9
  • Badr F. M., Spickett S. G. Genetic variation in adrenal weight in young adult mice. J Endocrinol 1971; 49: 105–11
  • Valdar W., Solberg L. C., Gauguier D., Cookson W. O., Rawlins J. N., Mott R., et al. Genetic and environmental effects on complex traits in mice. Genetics 2006; 174: 959–84
  • Llamas B., Contesse V., Guyonnet‐Duperat V., Vaudry H., Mormede P., Moisan M. P. QTL mapping for traits associated with stress neuroendocrine reactivity in rats. Mamm Genome 2005; 16: 505–15
  • Garlow S. J., Boone E., Li W., Owens M. J., Nemeroff C. B. Genetic analysis of the hypothalamic corticotropin‐releasing factor system. Endocrinology 2005; 146: 2362–8
  • Wellcome Trust Case Control Consortium. Genome‐wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 2007; 447: 661–78
  • Lipska B. K., Mitkus S., Caruso M., Hyde T. M., Chen J., Vakkalanka R., et al. RGS4 mRNA expression in postmortem human cortex is associated with COMT Val158Met genotype and COMT enzyme activity. Hum Mol Genet 2006; 15: 2804–12
  • Breuner C. W., Orchinik M. Plasma binding proteins as mediators of corticosteroid action in vertebrates. J Endocrinol 2002; 175: 99–112
  • Guyonnet‐Duperat V., Geverink N., Plastow G. S., Evans G., Ousova O., Croisetiere C., et al. Functional implication of an Arg307Gly substitution in corticosteroid‐binding globulin, a candidate gene for a quantitative trait locus associated with cortisol variability and obesity in pig. Genetics 2006; 173: 2143–9
  • Smith C. L., Hammond G. L. An amino acid substitution in biobreeding rat corticosteroid binding globulin results in reduced steroid binding affinity. J Biol Chem 1991; 266: 18555–9
  • Joyner J. M., Hutley L. J., Bachmann A. W., Torpy D. J., Prins J. B. Greater replication and differentiation of preadipocytes in inherited corticosteroid‐binding globulin deficiency. Am J Physiol Endocrinol Metab 2003; 284: E1049–54
  • Fernandez‐Real J. M., Grasa M., Casamitjana R., Pugeat M., Barret C., Ricart W. Plasma total and glycosylated corticosteroid‐binding globulin levels are associated with insulin secretion. J Clin Endocrinol Metab 1999; 84: 3192–6
  • Fernandez‐Real J. M., Pugeat M., Emptoz‐Bonneton A., Ricart W. Study of the effect of changing glucose, insulin, and insulin‐like growth factor‐I levels on serum corticosteroid binding globulin in lean, obese, and obese subjects with glucose intolerance. Metabolism 2001; 50: 1248–52
  • Fernandez‐Real J. M., Pugeat M., Lopez‐Bermejo A., Bornet H., Ricart W. Corticosteroid‐binding globulin affects the relationship between circulating adiponectin and cortisol in men and women. Metabolism 2005; 54: 584–9
  • Ousova O., Guyonnet‐Duperat V., Iannuccelli N., Bidanel J. P., Milan D., Genet C., et al. Corticosteroid binding globulin: a new target for cortisol‐driven obesity. Mol Endocrinol 2004; 18: 1687–96
  • Wang M. The role of glucocorticoid action in the pathophysiology of the Metabolic Syndrome. Nutr Metab (Lond) 2005; 2: 3
  • Antonijevic I. A., Murck H., Bohlhalter S., Frieboes R. M., Holsboer F., Steiger A. Neuropeptide Y promotes sleep and inhibits ACTH and cortisol release in young men. Neuropharmacol 2000; 39: 1474–81
  • Heilig M. The NPY system in stress, anxiety and depression. Neuropeptides 2004; 38: 213–24
  • Heilig M., Thorsell A. Brain neuropeptide Y (NPY) in stress and alcohol dependence. Rev Neurosci 2002; 13: 85–94
  • Lappalainen J., Kranzler H. R., Malison R., Price L. H., Van Dyck C., Rosenheck R. A., et al. A functional neuropeptide Y Leu7Pro polymorphism associated with alcohol dependence in a large population sample from the United States. Arch Gen Psychiatry 2002; 59: 825–31
  • Morgan C. A 3rd., Rasmusson A. M., Wang S., Hoyt G., Hauger R. L., Hazlett G. Neuropeptide‐Y, cortisol, and subjective distress in humans exposed to acute stress: replication and extension of previous report. Biol Psychiatry 2002; 52: 136–42
  • Jaakkola U., Koulu M., Karvonen M. K., Seppala H., Pesonen U., Vahlberg T., et al. Impact of the Leu7Pro polymorphism of preproNPY on diurnal NPY and hormone secretion in type 2 diabetes. Exp Clin Endocrinol Diabetes 2007; 115: 281–6
  • Ukkola O., Kesaniemi Y. A. Leu7Pro polymorphism of PreproNPY associated with an increased risk for type II diabetes in middle‐aged subjects. Eur J Clin Nutr 2007; 61: 1102–5
  • Ardati A., Goetschy V., Gottowick J., Henriot S., Valdenaire O., Deuschle U., et al. Human CRF2 alpha and beta splice variants: pharmacological characterization using radioligand binding and a luciferase gene expression assay. Neuropharmacol 1999; 38: 441–8
  • Bale T. L., Contarino A., Smith G. W., Chan R., Gold L. H., Sawchenko P. E., et al. Mice deficient for corticotropin‐releasing hormone receptor‐2 display anxiety‐like behaviour and are hypersensitive to stress. Nat Genet 2000; 24: 410–4
  • Muller M. B., Preil J., Renner U., Zimmermann S., Kresse A. E., Stalla G. K., et al. Expression of CRHR1 and CRHR2 in mouse pituitary and adrenal gland: implications for HPA system regulation. Endocrinology 2001; 142: 4150–3
  • Ehrhart‐Bornstein M., Hinson J. P., Bornstein S. R., Scherbaum W. A., Vinson G. P. Intraadrenal interactions in the regulation of adrenocortical steroidogenesis. Endocr Rev 1998; 19: 101–43, Erratum in: Endocr Rev. 1998;19:301
  • Rosmond R., Chagnon Y. C., Chagnon M., Perusse L., Bouchard C., Bjorntorp P. A polymorphism of the 5′‐flanking region of the glucocorticoid receptor gene locus is associated with basal cortisol secretion in men. Metabolism 2000; 49: 1197–9
  • Koper J. W., Stolk R. P., de Lange P., Huizenga N. A., Molijn G. J., Pols H. A., et al. Lack of association between five polymorphisms in the human glucocorticoid receptor gene and glucocorticoid resistance. Hum Genet 1997; 99: 663–8
  • Jewell C. M., Cidlowski J. A. Molecular Evidence for a Link between the N363S Glucocorticoid Receptor Polymorphism and Altered Gene Expression. J Clin Endocrinol Metab 2007; 92: 3268–77
  • Meaney M. J., Szyf M. Environmental programming of stress responses through DNA methylation: life at the interface between a dynamic environment and a fixed genome. Dialogues Clin Neurosci 2005; 7: 103–23
  • Davies E., Holloway C. D., Ingram M. C., Friel E. C., Inglis G. C., Swan L., et al. An influence of variation in the aldosterone synthase gene (CYP11B2) on corticosteroid responses to ACTH in normal human subjects. Clin Endocrinol (Oxf) 2001; 54: 813–7
  • Keavney B., Mayosi B., Gaukrodger N., Imrie H., Baker M., Fraser R., et al. Genetic variation at the locus encompassing 11‐beta hydroxylase and aldosterone synthase accounts for heritability in cortisol precursor (11‐deoxycortisol) urinary metabolite excretion. J Clin Endocrinol Metab 2005; 90: 1072–7
  • Kidambi S., Kotchen J. M., Grim C. E., Raff H., Mao J., Singh R. J., et al. Association of adrenal steroids with hypertension and the metabolic syndrome in blacks. Hypertension 2007; 49: 704–11
  • Olshansky S. J., Passaro D. J., Hershow R. C., Layden J., Carnes B. A., Brody J., et al. A potential decline in life expectancy in the United States in the 21st century. N Engl J Med 2005; 352: 1138–45
  • Chang Y. T., Kappy M. S., Iwamoto K., Wang J., Yang X., Pang S. Mutations in the type II 3 beta‐hydroxysteroid dehydrogenase gene in a patient with classic salt‐wasting 3 beta‐hydroxysteroid dehydrogenase deficiency congenital adrenal hyperplasia. Pediatr Res 1993; 34: 698–700
  • Rheaume E., Simard J., Morel Y., Mebarki F., Zachmann M., Forest M. G., et al. Congenital adrenal hyperplasia due to point mutations in the type II 3 beta‐hydroxysteroid dehydrogenase gene. Nat Genet 1992; 1: 239–45
  • Lyons J., Landis C. A., Harsh G., Vallar L., Grunewald K., Feichtinger H., et al. Two G protein oncogenes in human endocrine tumors. Science 1990; 249: 655–9
  • Tee M. K., Lin D., Sugawara T., Holt J. A., Guiguen Y., Buckingham B., et al. T–>A transversion 11 bp from a splice acceptor site in the human gene for steroidogenic acute regulatory protein causes congenital lipoid adrenal hyperplasia. Hum Mol Genet 1995; 4: 2299–305
  • Pascoe L., Curnow K. M., Slutsker L., Rosler A., White P. C. Mutations in the human CYP11B2 (aldosterone synthase) gene causing corticosterone methyloxidase II deficiency. Proc Natl Acad Sci U S A 1992; 89: 4996–5000
  • Lloyd‐MacGilp S. A., Torielli L., Bechtel S., Tripodi G., Gomez‐Sanchez C. E., Zagato L., et al. Mutations in aldosterone synthase gene of Milan hypertensive rats: phenotypic consequences. Am J Physiol Endocrinol Metab 2002; 282: E608–17
  • Biason‐Lauber A., Schoenle E. J. Apparently normal ovarian differentiation in a prepubertal girl with transcriptionally inactive steroidogenic factor 1 (NR5A1/SF‐1) and adrenocortical insufficiency. Am J Hum Genet 2000; 67: 1563–8
  • Groussin L., Jullian E., Perlemoine K., Louvel A., Leheup B., Luton J. P., et al. Mutations of the PRKAR1A gene in Cushing's syndrome due to sporadic primary pigmented nodular adrenocortical disease. J Clin Endocrinol Metab 2002; 87: 4324–9
  • Marissal‐Arvy N., Lombes M., Petterson J., Moisan M. P., Mormede P. Gain of function mutation in the mineralocorticoid receptor of the Brown Norway rat. J Biol Chem 2004; 279: 39232–9

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.