235
Views
3
CrossRef citations to date
0
Altmetric
Review

HDL biogenesis and cellular cholesterol homeostasis

Pages 29-38 | Published online: 08 Jul 2009

References

  • Brown M. S., Goldstein J. L. A receptor‐mediated pathway for cholesterol homeostasis. Science 1986; 232: 34–47
  • Brown M. S., Goldstein J. L. A proteolytic pathway that controls the cholesterol content of membranes, cells, and blood. Proc Natl Acad Sci U S A 1999; 96: 11041–8
  • Horton J. D., Goldstein J. L., Brown M. S. SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J Clin Invest 2002; 109: 1125–31
  • Fielding C. J., Fielding P. E. Molecular physiology of reverse cholesterol transport. J Lipid Res 1995; 36: 211–28
  • Gordon D. J., Rifkind B. M. High density lipoprotein—The clinical implications of recent studies. New Eng J Med 1989; 321: 1311–6
  • Ho Y. K., Brown M. S., Goldstein J. L. Hydrolysis and excretion of cytoplasmic cholesterol esters by macrophages: Stimulation by high density lipoprotein and other agents. J Lipid Res 1980; 21: 391–8
  • Oram J. F., Yokoyama S. Apolipoprotein‐mediated removal of cellular cholesterol and phospholipids. J Lipid Res 1996; 37: 2473–91
  • Yokoyama S. Apolipoprotein‐mediated cellular cholesterol efflux. Biochim Biophys Acta 1998; 1392: 1–15
  • Yokoyama S. Release of cellular cholesterol: Molecular mechanism for cholesterol homeostasis in cells and in the body. Biochim Biophys Acta 2000; 1529: 231–44
  • Glomset J. A. The lecithin: cholesterol acyltransferase reaction. J Lipid Res 1968; 9: 155–67
  • Czarnecka H., Yokoyama S. Lecithin: cholesterol acyltransferase reaction on cellular lipid released by free apolipoprotein‐mediated efflux. Biochemistry 1995; 34: 4385–92
  • Czarnecka H., Yokoyama S. Regulation of cellular cholesterol efflux by lecithin: cholesterol acyltransferase reaction through nonspecific lipid exchange. J Biol Chem 1996; 271: 2023–8
  • Ji Y., Jian B., Wang N., Sun Y., Moya M. L., Phillips M. C., et al. Scavenger receptor BI promotes high density lipoprotein‐mediated cellular cholesterol efflux. J Biol Chem 1997; 272: 20982–5
  • de La Llera‐Moya M., Connelly M. A., Drazul D., Klein S. M., Favari E., Yancey P. G., et al. Scavenger receptor class B type I affects cholesterol homeostasis by magnifying cholesterol flux between cells and HDL. J Lipid Res 2001; 42: 1969–78
  • Liu T., Krieger M., Kan H. Y., Zannis V. I. The effects of mutations in helices 4 and 6 of ApoA‐I on scavenger receptor class B type I (SR‐BI)‐mediated cholesterol efflux suggest that formation of a productive complex between reconstituted high density lipoprotein and SR‐BI is required for efficient lipid transport. J Biol Chem 2002; 277: 21576–84
  • Chroni A., Nieland T. J., Kypreos K. E., Krieger M., Zannis V. I. SR‐BI mediates cholesterol efflux via its interactions with lipid‐bound ApoE. Structural mutations in SR‐BI diminish cholesterol efflux. Biochemistry 2005; 44: 13132–43
  • Wang N., Lan D., Chen W., Matsuura F., Tall A. R. ATP‐binding cassette transporters G1 and G4 mediate cellular cholesterol efflux to high‐density lipoproteins. Proc Natl Acad Sci U S A 2004; 101: 9774–9
  • Hara H., Yokoyama S. Interaction of free apolipoprotein with macrophages: Formation of high density lipoprotein‐like lipoproteins and reduction of cellular cholesterol. J Biol Chem 1991; 266: 3080–6
  • Forte T. M., Goth‐Goldstein R., Nordhausen R. W., McCall M. R. Apolipoprotein A‐I‐cell membrane interaction: extracellular assembly of heterogeneous nascent HDL particles. J Lipid Res 1993; 34: 317–24
  • Forte T. M., Bielicki J. K., Knoff L., McCall M. R. Structural relationships between nascent apoA‐I‐containing particles that are extracellularly assembled in cell culture. J Lipid Res 1996; 37: 1076–85
  • Forte T. M., Bielicki J. K., Goth‐Goldstein R., Selmek J., McCall M. R. Recruitment of cell phospholipids and cholesterol by apolipoproteins A‐II and A‐I: formation of nascent apolipoprotein‐specific HDL that differ in size, phospholipid composition, and reactivity with LCAT. J Lipid Res 1995; 36: 148–57
  • Hara H., Hara H., Komaba A., Yokoyama S. α‐Helical requirements for free apolipoproteins to generate HDL and to induce cellular lipid efflux. Lipids 1992; 27: 302–4
  • Yancey P. G., Bielicki J. K., Johnson W. J., Lund‐Katz S., Palgunachari M. N., Anantharamaiah G. M., et al. Efflux of cellular cholesterol and phospholipid to lipid‐free apolipoproteins and class A amphipathic peptides. Biochemistry 1995; 34: 7955–65
  • Mendez A. J., Anantharamaiah G. M., Segrest J. P., Oram J. F. Synthetic amphipathic helical peptides that mimic apolipoprotein A‐I in clearing cellular cholesterol. J Clin Invest 1994; 94: 1698–705
  • Remaley A. T., Thomas F., Stonik J. A., Demosky S. J., Bark S. E., Neufeld E. B., et al. Synthetic amphipathic helical peptides promote lipid efflux from cells by an ABCA1‐dependent and an ABCA1‐independent pathway. J Lipid Res 2003; 44: 828–36
  • Francis G. A., Knopp R. H., Oram J. F. Defective removal of cellular cholesterol and phospholipids by apolipoprotein A‐I in Tangier disease. J Clin Invest 1995; 96: 78–87
  • Remaley A. T., Schumacher U. K., Stonik J. A., Farsi B. D., Nazih H. B., Brewer H. B. J. Decreased reverse cholesterol transport from Tangier disease fibroblasts: Acceptor specificity and effect of brefeldin on lipid efflux. Arterioscler Thromb Vasc Biol 1997; 17: 1813–21
  • Brooks‐Wilson A., Marcil M., Clee S. M., Zhang L‐H., Roomp K., van Dam M., et al. Mutations in ABC1 in tangier disease and familial high‐density lipoprotein deficiency. Nat Genet 1999; 22: 336–45
  • Bodzioch M., Orso E., Klucken J., Langmann T., Bottcher A., Diederrich W., et al. The gene encoding ATP‐binding cassette transporter 1 is mutated in Tangier disease. Nat Genet 1999; 22: 347–51
  • Rust S., Rosier M., Funke H., Real J., Amoura Z., Piette J‐C., et al. Tangier disease is caused by mutations in the gene encoding ATP binding‐cassette transporter 1. Nat Genet 1999; 22: 352–5
  • Lawn R. M., Wade D. P., Garvin M. R., Wang X., Schwartz K., Porter J. G., et al. The Tangier disease gene product ABC1 controls the cellular apolipoprotein‐mediated lipid removal pathway. J Clin Invest 1999; 104: R25–R31
  • Remaley A. T., Rust S., Rosier M., Knapper C., Naudin L., Broccardo C., et al. Human ATP‐binding cassette transporter 1 (ABC1): Genomic organization and identification of the genetic defect in the original Tangier disease kindred. Proc Natl Acad Sci U S A 1999; 96: 12685–90
  • Marcil M., Brooks‐Wilson A., Clee S. M., Roomp K., Zhang L. H., Yu L., et al. Mutations in the ABC1 gene in familial HDL deficiency with defective cholesterol efflux. Lancet 1999; 354: 1341–6
  • Orso E., Broccardo C., Kaminski W. E., Böttcher A., Liebisch G., Drobnik W., et al. Transport of lipids from Golgi to plasma membrane is defective in Tangier disease patients and abc1‐deficient mice. Nat Genet 2000; 24: 192–6
  • McNeish J., Aiello R. J., Guyot D., Turi T., Gabel C., Aldinger C., et al. High density lipoprotein deficiency and foam cell accumulation in mice with targeted disruption of ATP‐binding cassette transporter‐1. Proc Natl Acad Sci U S A 2000; 97: 4245–50
  • Abe‐Dohmae S., Suzuki S., Wada Y., Aburatani H., Vance D. E., Yokoyama S. Characterization of apolipoprotein‐mediated HDL generation induced by cAMP in a murine macrophage cell line. Biochemistry 2000; 39: 11092–9
  • Oram J. F., Lawn R. M., Garvin M. R., Wade D. P. ABCA1 is the cAMP‐inducible apolipoprotein receptor that mediates cholesterol secretion from macrophages. J Biol Chem 2000; 275: 34508–11
  • Tajima S., Yokoyama S., Yamamoto A. Effect of lipid particle size on association of apolipoproteins with lipid. J Biol Chem 1983; 258: 10073–82
  • Okabe H., Yokoyama S., Yamamoto A. Modulation of cholesterol microenvironment with apolipoproteins induced by the presence of cholesteryl ester in lipid microemulsion. J Biochem 1988; 104: 141–8
  • Liang H‐Q., Rye K‐A., Barter P. J. Dissociation of lipid‐free apolipoprotein A‐I from high density lipoproteins. J Lipid Res 1994; 35: 1187–99
  • Liang H‐Q., Rye K‐A., Barter P. J. Cycling of apolipoprotein A‐I between lipid‐associated and lipid‐free pools. Biochim Biophys Acta 1995; 1257: 31–7
  • Clay M. A., Newnham H. H., Forte T. M., Barter P. I. Cholesteryl ester transfer protein and hepatic lipase activity promote shedding of apo A‐I from HDL and subsequent formation of discoidal HDL. Biochim Biophys Acta 1992; 1124: 52–8
  • Pussinen P., Jauhiainen M., Metso J., Tyynela J., Ehnholm C. Pig plasma phospholipid transfer protein facilitates HDL interconversion. J Lipid Res 1995; 36: 975–85
  • Wolfbauer G., Albers J. J., Oram J. F. Phospholipid transfer protein enhances removal of cellular cholesterol and phospholipids by high‐density lipoprotein apolipoproteins. Biochim Biophys Acta 1999; 1439: 65–76
  • Komaba A., Li Q., Hara H., Yokoyama S. Resistance of smooth muscle cells to assembly of high density lipoproteins with extracellular free apolipoproteins and to reduction of intracellularly accumulated cholesterol. J Biol Chem 1992; 267: 17560–6
  • Okuhira K., Tsujita M., Yamauchi Y., Abe‐Dohmae S., Kato K., Handa T., et al. Potential involvement of dissociated apoA‐I in the ABCA1‐dependent cellular lipid release by HDL. J Lipid Res 2004; 45: 645–52
  • Bell‐Quint J., Forte T. Time‐related changes in the synthesis and secretion of very low density, low density and high density lipoproteins by cultured rat hepatocytes. Biochim Biophys Acta 1981; 663: 83–98
  • Cheung M. C., Lum K. D., Brouillette C. G., Bisgaier C. L. Characterization of apoA‐I‐containing lipoprotein subpopulations secreted by HepG2 cells. J Lipid Res 1989; 30: 1429–36
  • Sorci‐Thomas M., Prack M. M., Dashti N., Johnson F., Rudel L. L., Williams D. L. Apolipoprotein (apo) A‐I production and mRNA abundance explain plasma apoA‐I and high density lipoprotein differences between two nonhuman primate species with high and low susceptibilities to diet‐induced hypercholesterolemia. J Biol Chem 1988; 263: 5183–9
  • Sorci‐Thomas M., Prack M. M., Dashti N., Johnson F., Rudel L. L., Williams D. L. Differential effects of dietary fat on the tissue‐specific expression of the apolipoprotein A‐I gene: relationship to plasma concentration of high density lipoproteins. J Lipid Res 1989; 30: 1397–403
  • Smith J. D., Miyata M., Ginsberg M., Grigaux C., Shmookler E., Plump A. S. Cyclic AMP induces apolipoprotein E binding activity and promotes cholesterol efflux from macrophage cell line to apolipoprotein acceptors. J Biol Chem 1996; 271: 30647–55
  • Zhang W‐Y., Gaynor P. M., Kruth H. S. Apolipoprotein E produced by human monocyte‐derived macrophages mediates cholesterol efflux that occurs in the absence of added cholesterol acceptors. J Biol Chem 1996; 271: 28641–6
  • Tsujita M., Wu C‐A., Abe‐Dohmae S., Usui S., Okazaki M., Yokoyama S. On the hepatic mechanism of HDL assembly by the ABCA1/apoA‐I pathway. J Lipid Res 2005; 46: 154–62
  • Chisholm J. W., Burleson E. R., Shelness G. S., Parks J. S. ApoA‐I secretion from HepG2 cells: evidence for the secretion of both lipid‐poor apoA‐I and intracellularly assembled nascent HDL. J Lipid Res 2002; 43: 36–44
  • Kiss R. S., McManus D. C., Franklin V., Tan W. L., McKenzie A., Chimini G., et al. The lipidation by hepatocytes of human apolipoprotein A‐I occurs by both ABCA1‐dependent and ‐independent pathways. J Biol Chem 2003; 278: 10119–27
  • Ito J., Zhang L., Asai M., Yokoyama S. Differential generation of high‐density lipoprotein by endogenous and exogenous apolipoproteins in cultured fetal rat astrocytes. J Neurochem 1999; 72: 2362–9
  • Li Q., Komaba A., Yokoyama S. Cholesterol is poorly available for free apolipoprotein‐mediated cellular lipid efflux from smooth muscle cells. Biochemistry 1993; 32: 4597–603
  • Jonas A. Reconstitution of high‐density lipoproteins. Methods Enzymol 1986; 128: 553–82
  • von Eckardstein A., Assmann G. High density lipoproteins and reverse cholesterol transport: lessons from mutations. Atherosclerosis 1998; 137: S7–11
  • Nanjee M. N., Cooke C. J., Olszewski W. L., Miller N. E. Concentrations of electrophoretic and size subclasses of apolipoprotein A‐I‐containing particles in human peripheral lymph. Arterioscler Thromb Vasc Biol 2000; 20: 2148–55
  • Abe‐Dohmae S., Ikeda Y., Matsuo M., Hayashi M., Okuhira K., Ueda K., et al. Human ABCA7 supports apolipoprotein‐mediated release of cellular cholesterol and phospholipid to generate high density lipoprotein. J Biol Chem 2004; 279: 604–11
  • Wang N., Lan D., Gerbod‐Giannone M., Linsel‐Nitschke P., Jehle A. W., Chen W., et al. ATP‐binding cassette transporter A7 (ABCA7) binds apolipoprotein A‐I and mediates cellular phospholipid but not cholesterol efflux. J Biol Chem 2003; 278: 42906–12
  • Hayashi M., Abe‐Dohmae S., Okazaki M., Ueda K., Yokoyama S. Heterogeneity of high density lipoprotein generated by ABCA1 and ABCA7. J Lipid Res 2005; 46: 1703–11
  • Abe‐Dohmae S., Kato K. H., Kumon Y., Hu W., Ishigami H., Iwamoto N., et al. Serum amyloid A generates high density lipoprotein with cellular lipid in an ABCA1‐ or ABCA7‐dependent manner. J Lipid Res 2006; 7: 1542–50
  • Kim W. S., Fitzgerald M. L., Kang K., Okuhira K., Bell S. A., Manning J. J., et al. ABCA7 null mice retain normal macrophage phosphatidylcholine and cholesterol efflux activity despite alterations in adipose mass and serum cholesterol levels. J Biol Chem 2005; 280: 3989–95
  • Iwamoto N., Abe‐Dohmae S., Sato R., Yokoyama S. ABCA7 expression is regulated by cellular cholesterol through the SREBP2 pathway and associated with phagocytosis. J Lipid Res 2006; 47: 1915–27
  • Assmann G., von Eckardstein A., Brewer HB Jr. Familial Analphalipoproteinemia: Tangier Disease. The Metabolic and Molecular Basis of Inherited Disease, C. R Scriver, A. L Beaudet, D Valle, W. S Sly, C. R Scriver, A. L Beaudet. McGraw‐Hill, New York 2001; 2937–60, 8th ed
  • Glomset J. A., Assmann G., Gjone E., Norum K. R. Lecithin: cholesterol acyltransferase deficiency and fish eye disease. The Metabolic and Molecular Basis of Inherited Disease, C. R Scriver, A. L Beaudet, W. S Sly, D Valle, C. R Scriver, A. L Beaudet. McGraw‐Hill, Inc. Health Profession Division, New York 1995; 1933–52, 7th ed
  • Tomimoto S., Tsujita M., Okazaki M., Usui S., Tada T., Fukutomi T., et al. Effect of probucol in lecithin‐cholesterol acyltransferase deficient mice: Inhibition of two independent cellular cholesterol releasing pathways in vivo. Arterioscler Thromb Vasc Biol 2001; 21: 394–400

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.