1,614
Views
92
CrossRef citations to date
0
Altmetric
Review Article

The connection between C‐reactive protein and atherosclerosis

, , & , PhD
Pages 110-120 | Published online: 08 Jul 2009

References

  • Shrive A. K., Cheetham G. M. T., Holden D., Myles D. A. A., Turnell W. G., Volanakis J. E., et al. Three dimensional structure of human C‐reactive protein. Nature Struct Biol 1996; 3: 346–54
  • Lin S., Lee C‐K., Wang Y‐M., Huang L‐S., Lin Y‐H., Lee S‐Y., et al. Measurement of dimensions of pentagonal doughnut‐shaped C‐reactive protein using an atomic force microscope and a dual polarisation interferometric biosensor. Biosens Bioelectron 2006; 22: 323–7
  • Kruth H. S. Macrophage foam cells and atherosclerosis. Front Biosci 2001; 6: D429–55
  • Libby P. Inflammation in atherosclerosis. Nature 2002; 420: 868–74
  • Tillett W. S., Francis T Jr. Serological reactions in pneumonia with a non‐protein somatic fraction of pneumococcus. J Exp Med 1930; 52: 561–71
  • Riley R. F., Hokama Y., Colver V., Coleman M. K., Dowdy A. H. Seroflocculant activity of ethyl choladienate and various alcohols in the Penn test for cancer. Cancer Res 1958; 18: 833–41
  • Pepys M. B., Hirschfield G. M., Tennent G. A., Gallimore J. R., Kahan M. C., Bellotti V., et al. Targeting C‐reactive protein for the treatment of cardiovascular disease. Nature 2006; 440: 1217–21
  • Kovacs A., Tornvall P., Nilsson R., Tegnér J., Hamsten A., Björkegren J. Human C‐reactive protein slows atherosclerosis development in a mouse model with human‐like hypercholesterolemia. Proc Natl Acad Sci U S A 2007; 104: 13768–73
  • Pasceri V., Willerson J. T., Yeh E. T. H. Direct proinflammatory effect of C‐reactive protein on human endothelial cells. Circulation 2000; 102: 2165–8
  • Labarrere C. A., Zaloga G. P. C‐reactive protein: from innocent bystander to pivotal mediator of atherosclerosis. Am J Med 2004; 117: 499–507
  • Verma S., Devaraj S., Jialal I. Is C‐reactive protein an innocent bystander or proatherogenic culprit? C‐reactive protein promotes atherothrombosis. Circulation 2006; 113: 2135–50
  • Samols D., Agrawal A., Kushner I. Acute phase proteins. Cytokine references online, J. J Oppenheim, M Feldman. Academic Press, LondonUK 2002, Available from: www.apnet.com/cytokinereference
  • Libby P., Ridker P. M. Inflammation and atherosclerosis: role of C‐reactive protein in risk assessment. Am J Med 2004; 116: 9S–16
  • Fichtlscherer S., Zeiher A. M. Endothelial dysfunction in acute coronary syndromes: association with elevated C‐reactive protein levels. Ann Med 2000; 32: 515–8
  • Howard‐Alpe G. M., Sear J. W., Foex P. Methods of detecting atherosclerosis in non‐cardiac surgical patients: the role of biochemical markers. Br J Anaesth 2006; 97: 758–69
  • Sakkinen P., Abbott R. D., Curb J. D., Rodriguez B. L., Yano K., Tracy R. P. C‐reactive protein and myocardial infarction. J Clin Epidemiol 2002; 55: 445–51
  • Voleti B., Agrawal A. Regulation of basal and induced expression of C‐reactive protein through an overlapping element for OCT‐1 and NF‐κB on the proximal promoter. J Immunol 2005; 175: 3386–90
  • Singh P. P., Voleti B., Agrawal A. A novel RBP‐Jκ‐dependent switch from C/EBPβ to C/EBPζ at the C/EBP‐binding site on the C‐reactive protein promoter. J Immunol 2007; 178: 7302–9
  • Patel D. N., King C. A., Bailey S. R., Holt J. W., Venkatachalam K., Agrawal A., et al. Interleukin‐17 stimulates C‐reactive protein expression in hepatocytes and smooth muscle cells via p38 MAPK and ERK1/2‐dependent NF‐κB and C/EBPβ activation. J Biol Chem 2007; 282: 27229–38
  • Pepys M. B., Hirschfield G. M. C‐reactive protein: a critical update. J Clin Invest 2003; 111: 1805–12
  • Calabro P., Willerson J. T., Yeh E. T. H. Inflammatory cytokines stimulated C‐reactive protein production by human coronary artery smooth muscle cells. Circulation 2003; 108: 1930–2
  • Venugopal S. K., Devaraj S., Jialal I. Macrophage conditioned medium induces the expression of C‐reactive protein in human aortic endothelial cells: potential for paracrine/autocrine effects. Am J Pathol 2005; 166: 1265–71
  • Kang D‐H., Park S‐K., Lee I‐K., Johnson R. J. Uric acid‐induced C‐reactive protein expression: implication on cell proliferation and nitric oxide production of human vascular cells. J Am Soc Nephrol 2005; 16: 3553–62
  • Reynolds G. D., Vance R. P. C‐reactive protein immunohistochemical localization in normal and atherosclerotic human aortas. Arch Pathol Lab Med 1987; 111: 265–9
  • Yasojima K., Schwab C., McGeer E. G., McGeer P. L. Generation of C‐reactive protein and complement components in atherosclerotic plaques. Am J Pathol 2001; 158: 1039–51
  • Jabs W. J., Theissing E., Nitschke M., Bechtel J. F. M., Duchrow M., Mohamed S., et al. Local generation of C‐reactive protein in diseased coronary artery venous bypass grafts and normal vascular tissue. Circulation 2003; 108: 1428–31
  • Vogel C. F. A., Sciullo E., Wong P., Kuzmicky P., Kado N., Matsumura F. Induction of proinflammatory cytokines and C‐reactive protein in human macrophage cell line U937 exposed to air pollution particulates. Environ Health Perspect 2005; 113: 1536–41
  • Inoue T., Kato T., Uchida T., Sakuma M., Nakajima A., Shibazaki M., et al. Local release of C‐reactive protein from vulnerable plaque or coronary arterial wall injured by stenting. J Am Coll Cardiol 2005; 46: 239–45
  • Black S., Kushner I., Samols D. C‐reactive protein. J Biol Chem 2004; 279: 48487–90
  • Ridker P. M., Cannon C. P., Morrow D., Rifai N., Rose L. M., McCabe C. H., et al. C‐reactive protein levels and outcomes after statin therapy. N Engl J Med 2005; 352: 20–8
  • Nissen S. E., Tuzcu E. M., Schoenhagen P., Crowe T., Sasiela W. J., Tsai J., et al. Statin therapy, LDL cholesterol, C‐reactive protein, and coronary artery disease. N Engl J Med 2005; 352: 29–38
  • Pearson T. A., Mensah G. A., Hong Y., Smith S. c Jr., CDC; AHA. CDC/AHA Workshop on markers of inflammation and cardiovascular disease: application to clinical and public health practice: overview. Circulation 2004; 110: e543–4
  • De Ferranti S., Rifai N. C‐reactive protein and cardiovascular disease: a review of risk prediction and interventions. Clin Chim Acta 2002; 317: 1–15
  • Kushner I., Rzewnicki D., Samols D. What does minor elevation of C‐reactive protein signify?. Am J Med 2006; 119: 166.e17–28
  • Endres M. Statins: potential new indications in inflammatory conditions. Atheroscler Suppl 2006; 7: 31–5
  • Strandberg T. E., Vanhanen H., Tikkanen M. J. Effect of statins on C‐reactive protein in patients with coronary artery disease. Lancet 1999; 353: 118–9
  • Kleemann R., Verschuren L., de Rooij B. J., Lindeman J., de Maat M. M., Szalai A. J., et al. Evidence for anti‐inflammatory activity of statins and PPARα activators in human C‐reactive protein transgenic mice in vivo and in cultured human hepatocytes in vitro. Blood 2004; 103: 4188–94
  • Voleti B., Agrawal A. Statins and nitric oxide reduce C‐reactive protein production while inflammatory conditions persist. Mol Immunol 2006; 43: 891–6
  • Arnaud C., Burger F., Steffens S., Veillard N. R., Nguyen T. H., Trono D., et al. Statins reduce interleukin‐6‐induced C‐reactive protein in human hepatocytes: new evidence for direct antiinflammatory effects of statins. Arterioscler Thromb Vasc Biol 2005; 25: 1231–6
  • Gervois P., Kleemann R., Pilon A., Percevault F., Koenig W., Staels B., et al. Global suppression of IL‐6‐induced acute phase response gene expression after chronic in vivo treatment with the peroxisome proliferator‐activated receptor‐α activator fenofibrate. J Biol Chem 2004; 279: 16154–60
  • Taylor K. E., van den Berg C. W. Structural and functional comparison of native pentameric, denatured monomeric and biotinylated C‐reactive protein. Immunology 2007; 120: 404–11
  • Schwedler S. B., Filep J. G., Galle J., Wanner C., Potempa L. A. C‐reactive protein: a family of proteins to regulate cardiovascular function. Am J Kidney Dis 2006; 47: 212–22
  • Kinoshita C. M., Ying S. C., Hugli T. E., Siegel J. N., Potempa L. A., Jiang H., et al. Elucidation of a protease‐sensitive site involved in the binding of calcium to C‐reactive protein. Biochemistry 1989; 28: 9840–8
  • Suresh M. V., Singh S. K., Agrawal A. Interaction of calcium‐bound C‐reactive protein with fibronectin is controlled by pH: in vivo implications. J Biol Chem 2004; 279: 52552–7
  • Fu T., Borensztajn J. Macrophage uptake of low‐density lipoprotein bound to aggregated C‐reactive protein: possible mechanism of foam‐cell formation in atherosclerotic lesions. Biochem J 2002; 366: 195–201
  • Potempa L. A., Siegel J. N., Fiedel B. A., Potempa R. T., Gewurz H. Expression, detection and assay of a neoantigen (Neo‐CRP) associated with a free, human C‐reactive protein subunit. Mol Immunol 1987; 24: 531–41
  • Ji S. R., Wu Y., Potempa L. A., Liang Y. H., Zhao J. Effect of modified C‐reactive protein on complement activation: a possible complement regulatory role of modified or monomeric C‐reactive protein in atherosclerotic lesions. Arterioscler Thromb Vasc Biol 2006; 26: 935–41
  • Diehl E. E., Haines G. K 3rd., Radosevich J. A., Potempa L. A. Immunohistochemical localization of modified C‐reactive protein antigen in normal vascular tissue. Am J Med Sci 2000; 319: 79–83
  • Ji S. R., Wu Y., Zhu L., Potempa L. A., Sheng F. L., Lu W., et al. Cell membranes and liposomes dissociate C‐reactive protein (CRP) to form a new, biologically active structural intermediate: mCRPm. FASEB J 2007; 21: 284–94
  • Wang H. W., Sui S. F. Dissociation and subunit rearrangement of membrane‐bound human C‐reactive proteins. Biochem Biophys Res Comm 2001; 288: 75–9
  • Motie M., Schaul K. W., Potempa L. A. Biodistribution and clearance of 125I‐labeled C‐reactive protein and 125I‐labeled modified C‐reactive protein in CD‐1 mice. Drug Metab Dispos 1998; 26: 977–81
  • Wang H. W., Wu Y., Chen Y., Sui S. F. Polymorphism of structural forms of C‐reactive protein. Int J Mol Med 2002; 9: 665–71
  • Kresl J. J., Potempa L. A., Anderson B., Radosevich J. A. Inhibition of mouse mammary adenocarcinoma (EMT6) growth and metastases in mice by a modified form of C‐reactive protein. Tumor Biol 1999; 20: 72–87
  • Sjowall C., Wettero J. Pathogenic implications for autoantibodies against C‐reactive protein and other acute phase proteins. Clin Chim Acta 2006; 378: 13–23
  • Khreiss T., József L., Potempa L. A., Filep J. G. Conformational rearrangement in C‐reactive protein is required for proinflammatory actions on human endothelial cells. Circulation 2004; 109: 2016–22
  • Heuertz R. M., Schneider G. P., Potempa L. A., Webster R. O. Native and modified C‐reactive protein bind different receptors on human neutrophils. Int J Biochem Cell Biol 2005; 37: 320–35
  • Boguslawski G., McGlynn P. W., Potempa L. A., Filep J. G., Labarrere C. A. Conduct unbecoming: C‐reactive protein interactions with a broad range of protein molecules. J Heart Lung Transplant 2007; 26: 705–13
  • Aho K. Studies of syphilitic antibodies. IV. Evidence of reactant partner common for C‐reactive protein and certain anti‐lipoidal antibodies. Br J Vener Dis 1969; 45: 13–8
  • Tsujimoto M., Inoue K., Nojima S. C‐reactive protein induced agglutination of lipid suspensions prepared in the presence and absence of phosphatidylcholine. J Biochem 1980; 87: 1531–7
  • Taskinen S., Kovanen P. T., Jarva H., Meri S., Pentikäinen M. O. Binding of C‐reactive protein to modified low‐density‐lipoprotein particles: identification of cholesterol as a novel ligand for C‐reactive protein. Biochem J 2002; 367: 403–12
  • Taskinen S., Hyvönen M., Kovanen P. T., Meri S., Pentikäinen M. O. C‐reactive protein binds to the 3β‐OH group of cholesterol in LDL particles. Biochem Biophys Res Comm 2005; 329: 1208–16
  • De Beer F. C., Soutar A. K., Baltz M. L., Trayner I. M., Feinstein A., Pepys M. B. Low density lipoprotein and very low density lipoprotein are selectively bound by aggregated C‐reactive protein. J Exp Med 1982; 156: 230–42
  • Nunomura W., Hatakeyama M. Binding of low density lipoprotein (LDL) to C‐reactive protein (CRP): a possible binding through apolipoprotein B in LDL at phosphorylcholine‐binding site of CRP. Hokkaido Igaku Zasshi 1990; 65: 474–80
  • Bhakdi S., Torzewski M., Klouche M., Hemmes M. Complement and atherogenesis: binding of CRP to degraded, nonoxidized LDL enhances complement activation. Arterioscler Thromb Vasc Biol 1999; 19: 2348–54
  • Chang M. K., Binder C. J., Torzewski M., Witztum J. L. C‐reactive protein binds to both oxidized LDL and apoptotic cells through recognition of a common ligand: phosphorylcholine of oxidized phospholipids. Proc Natl Acad Sci U S A 2002; 99: 13043–8
  • Van Tits L., de Graff J., Toenhake H., van Heerde W., Stalenhoef A. C‐reactive protein and annexin A5 bind to distinct sites of negatively charged phospholipids present in oxidized low‐density lipoprotein. Arterioscler Thromb Vasc Biol 2005; 25: 717–22
  • Biró A., Thielens N. M., Cervenák L., Prohászka Z., Füst G., Arlaud G. J. Modified low density lipoproteins differentially bind and activate the C1 complex of complement. Mol Immunol 2007; 44: 1169–77
  • Tabuchi M., Inoue K., Usui‐Kataoka H., Kobayashi K., Teramoto M., Takasugi K., et al. The association of C‐reactive protein with an oxidative metabolite of LDL and its implication in atherosclerosis. J Lipid Res 2007; 48: 768–81
  • Cabana V. G., Gewurz H., Siegel J. N. Interaction of very low density lipoproteins (VLDL) with rabbit C‐reactive protein. J Immunol 1982; 128: 2342–8
  • Toh C. H., Samis J., Downey C., Walker J., Becker L., Brufatto N., et al. Biphasic transmittance waveform in the APTT coagulation assay is due to the formation of a Ca++‐dependent complex of C‐reactive protein with very‐low‐density lipoprotein and is a novel marker of impending disseminated intravascular coagulation. Blood 2002; 100: 2522–9
  • Volanakis J. E., Kaplan M. H. Specificity of C‐reactive protein for choline phosphate residues of pneumococcal C‐polysaccharide. Proc Soc Exp Biol Med 1971; 136: 612–4
  • Agrawal A. CRP after 2004. Mol Immunol 2005; 42: 927–30
  • Thompson D., Pepys M. B., Wood S. P. The physiological structure of human C‐reactive protein and its complex with phosphocholine. Structure 1999; 7: 169–77
  • Agrawal A., Simpson M. J., Black S., Carey M. P., Samols D. A C‐reactive protein mutant that does not bind to phosphocholine and pneumococcal C‐polysaccharide. J Immunol 2002; 169: 3217–22
  • Suresh M. V., Singh S. K., Ferguson D. A Jr., Agrawal A. Human C‐reactive protein protects mice from Streptococcus pneumoniae infection without binding to pneumococcal C‐polysaccharide. J Immunol 2007; 178: 1158–63
  • Volanakis J. E. Human C‐reactive protein: expression, structure, and function. Mol Immunol 2001; 38: 189–97
  • Volanakis J. E., Wirtz K. W. A. Interaction of C‐reactive protein with artificial phosphatidylcholine bilayers. Nature 1979; 281: 155–7
  • Nauta A. J., Daha M. R., van Kooten C., Roos A. Recognition and clearance of apoptotic cells: a role for complement and pentraxins. Trends Immunol 2003; 24: 148–54
  • Hart S. P., Alexander K. M., MacCall S. M., Dransfield I. C‐reactive protein does not opsonize early apoptotic human neutrophils, but binds only membrane‐permeable late apoptotic cells and has no effect on their phagocytosis by macrophages. J Inflamm (Lond) 2005; 2: 5
  • Ciurana C. L., Hack C. E. Competitive binding of pentraxins and IgM to newly exposed epitopes on late apoptotic cells. Cell Immunol 2006; 239: 14–21
  • Trouw L. A., Bengtsson A. A., Gelderman K. A., Dahlbäck B., Sturfelt G., Blom A. M. C4b‐binding protein and factor H compensate for the loss of membrane bound complement inhibitors to protect apoptotic cells against excessive complement attack. J Biol Chem 2007; 282: 28540–8
  • Schwalbe R. A., Dahlbäck B., Coe J. E., Nelsestuen G. L. Pentraxin family of proteins interacts specifically with phosphorylcholine and/or phosphorylethanolamine. Biochemistry 1992; 31: 4907–15
  • Culley F. J., Bodman‐Smith K. B., Ferguson M. A., Nikolaev A. V., Shantilal N., Raynes J. G. C‐reactive protein binds to phosphorylated carbohydrates. Glycobiology 2000; 10: 59–65
  • Lee R. T., Lee Y. C. Carbohydrate ligands of human C‐reactive protein: binding of neoglycoproteins containing galactose‐6‐phosphate and galactose‐terminated disaccharide. Glycoconj J 2006; 23: 317–27
  • Sjoberg A. P., Trouw L. A., Clark S. J., Sjolander J., Heinegard D., Sim R. B., et al. The factor H variant associated with age‐related macular degeneration (His‐384) and the non‐disease‐associated form bind differentially to C‐reactive protein, fibromodulin, DNA, and necrotic cells. J Biol Chem 2007; 282: 10894–900
  • Mold C., Gewurz H., Du Clos T. W. Regulation of complement activation by C‐reactive protein. Immunopharmacology 1999; 42: 23–30
  • Biro A., Rovo Z., Papp D., Cervenak L., Varga L., Fust G., et al. Studies on the interactions between C‐reactive protein and complement proteins. Immunology 2007; 121: 40–50
  • Laine M., Jarva H., Seitsonen S., Haapasalo K., Lehtinen M. J., Lindeman N., et al. Y402H polymorphism of complement factor H affects binding affinity to C‐reactive protein. J Immunol 2007; 178: 3831–6
  • Sjowall C., Wettero J., Bengtsson T., Askendal A., Almroth G., Skogh T., et al. Solid‐phase classical complement activation by C‐reactive protein (CRP) is inhibited by fluid‐phase CRP‐C1q interaction. Biochem Biophys Res Commun 2007; 352: 251–8
  • McRae J. L., Duthy T. G., Griggs K. M., Ormsby R. J., Cowan P. J., Cromer B. A., et al. Human factor H‐related protein 5 has cofactor activity, inhibits C3 convertase activity, binds heparin and C‐reactive protein, and associates with lipoprotein. J Immunol 2005; 174: 6250–6
  • Saxena U., Nagpurkar A., Dolphin P. J., Mookerjea S. A study on the selective binding of apoprotein B‐ and E‐containing human plasma lipoproteins to immobilized rat serum phosphorylcholine‐binding protein. J Biol Chem 1987; 262: 3011–6
  • Ji S. R., Wu Y., Potempa L. A., Qiu Q., Zhao J. Interactions of C‐reactive protein with low‐density lipoproteins: implications for an active role of modified C‐reactive protein in atherosclerosis. Int J Biochem Cell Biol 2006; 38: 648–61
  • Mookerjea S., Francis J., Hunt D., Yang C. Y., Nagpurkar A. Rat C‐reactive protein causes a charge modification of LDL and stimulates its degradation by macrophages. Arterioscler Thromb 1994; 14: 282–7
  • Zwaka T. P., Hombach V., Torzewski J. C‐reactive protein‐mediated low density lipoprotein uptake by macrophages: implications for atherosclerosis. Circulation 2001; 103: 1194–7
  • Verma S., Li S‐H., Badiwala M. V., Weisel R. D., Fedak P. W. M., Li R‐K., et al. Endothelin antagonism and interleukin‐6 inhibition attenuate the proatherogenic effects of C‐reactive protein. Circulation 2002; 105: 1890–6
  • Hatanaka K., Li X‐A., Masuda K., Yutani C., Yamamoto A. Immunohistochemical localization of C‐reactive protein‐binding sites in human atherosclerotic aortic lesions by a modified streptavidin‐biotin‐staining method. Pathol Int 1995; 45: 635–41
  • Turk J. R., Carroll J. A., Laughlin M. H., Thomas T. R., Casati J., Bowles D. K., et al. C‐reactive protein correlates with macrophage accumulation in coronary arteries of hypercholesterolemic pigs. J Appl Physiol 2003; 95: 1301–4
  • Sun H., Koike T., Ichikawa T., Hatakeyama K., Shiomi M., Zhang B., et al. C‐reactive protein in atherosclerotic lesions: its origin and pathophysiological significance. Am J Pathol 2005; 167: 1139–48
  • Singh S. K., Suresh M. V., Voleti B., Prayther D. C., Moorman J. P., Han Z., et al. C‐reactive protein may prevent the formation of macrophage foam cells. J Immunol 2006; 176: S78–78
  • Stewart C. R., Tseng A. A., Mok Y. F., Staples M. K., Schiesser C. H., Lawrence L. J., et al. Oxidation of low‐density lipoproteins induces amyloid‐like structures that are recognized by macrophages. Biochemistry 2005; 44: 9108–16
  • Lim M. Y., Wang H., Kapoun A. M., O'Connell M., O'Young G., Brauer H. A., et al. p38 inhibition attenuates the pro‐inflammatory response to C‐reactive protein by human peripheral blood mononuclear cells. J Mol Cell Cardiol 2004; 37: 1111–4
  • Blaschke F., Bruemmer D., Yin F., Takata Y., Wang W., Fishbein M. C., et al. C‐reactive protein induces apoptosis in human coronary vascular smooth muscle cells. Circulation 2004; 110: 579–87
  • Wang C‐H., Li S‐H., Weisel R. D., Fedak P. W. M., Dumont A. S., Szmitko P. C‐reactive protein upregulates angiotensin type 1 receptors in vascular smooth muscle. Circulation 2003; 107: 1783–90
  • Qamirani E., Ren Y., Kuo L., Hein T. W. C‐reactive protein inhibits endothelium‐dependent NO‐mediated dilation in coronary arterioles by activating p38 kinase and NAD(P)H oxidase. Arterioscler Thromb Vasc Biol 2005; 25: 995–1001
  • Montero I., Orbe J., Varo N., Beloqui O., Monreal J. I., Rodriguez J. A., et al. C‐reactive protein induces matrix metalloproteinase‐1 and ‐10 in human endothelial cells: implications for clinical and subclinical atherosclerosis. J Am Coll Cardiol 2006; 47: 1369–78
  • Liang Y‐J., Shyu K‐G., Wang B‐W., Lai L‐P. C‐reactive protein activates the nuclear factor‐κB pathway and induces vascular cell adhesion molecule‐1 expression through CD32 in human umbilical vein endothelial cells and aortic endothelial cells. J Mol Cell Cardiol 2006; 40: 412–20
  • Verma S., Badiwala M. V., Weisel R. D., Li S‐H., Wang C‐H., Fedak P. W. M., et al. C‐reactive protein activates the nuclear factor‐κB signal transduction pathway in saphenous vein endothelial cells: implications for atherosclerosis and restenosis. J Thoracic Cardiovasc Surg 2003; 126: 1886–91
  • Wang Q., Zhu X., Xu Q., Ding X., Chen Y. E., Song Q. Effect of C‐reactive protein on gene expression in vascular endothelial cells. Am J Physiol 2005; 288: H1539–45
  • Kibayashi E., Urakaze M., Kobashi C., Kishida M., Takata M., Sato A., et al. Inhibitory effect of pitavastatin (NK‐104) on the C‐reactive protein‐induced interleukin‐8 production in human aortic endothelial cells. Clin Sci 2005; 108: 515–21
  • Wang H‐R., Li J‐J., Huang C‐X., Jiang H. Fluvastatin inhibits the expression of tumor necrosis factor‐α and activation of nuclear factor‐κB in human endothelial cells stimulated by C‐reactive protein. Clin Chim Acta 2005; 353: 53–60
  • Lin R., Liu J., Gan W., Yang G. C‐reactive protein‐induced expression of CD40‐CD40L and the effect of lovastatin and fenofibrate on it in human vascular endothelial cells. Biol Pharm Bull 2004; 27: 1537–43
  • Pasceri V., Chang J., Willerson J. T., Yeh E. T. H. Modulation of C‐reactive protein‐mediated monocyte chemoattractant protein‐1 induction in human endothelial cells by anti‐atherosclerosis drugs. Circulation 2001; 103: 2531–4
  • Pepys M. B., Hawkins P. N., Kahan M. C., Tennent G. A., Gallimore J. R., Graham D., et al. Proinflammatory effects of bacterial recombinant human C‐reactive protein are caused by contamination with bacterial products, not by C‐reactive protein itself. Circ Res 2005; 97: e97–103
  • Liu C., Wang S., Deb A., Nath K. A., Katusic Z. S., McConnell J. P., et al. Proapoptotic, antimigratory, antiproliferative, and antiangiogenic effects of commercial C‐reactive protein on various human endothelial cell types in vitro: implications of contaminating presence of sodium azide in commercial preparation. Circ Res 2005; 97: 135–43
  • Swafford A. N Jr., Bratz I. N., Knudson J. D., Rogers P. A., Timmerman J. M., Tune J. D., et al. C‐reactive protein does not relax vascular smooth muscle: effects mediated by sodium azide in commercially available preparations. Am J Physiol Heart Circ Physiol 2005; 288: H1786–95
  • Taylor K. E., Giddings J. C., van den Berg C. W. C‐reactive protein‐induced in vitro endothelial cell activation is an artefact caused by azide and lipopolysaccharide. Arterioscler Thromb Vasc Biol 2005; 25: 1225–30
  • Lafuente N., Azcutia V., Matesanz N., Cercas E., Rodriguez‐Manas L., Sanchez‐Ferrer C. F., et al. Evidence for sodium azide as an artifact mediating the modulation of inducible nitric oxide synthase by C‐reactive protein. J Cardiovasc Pharmacol 2005; 45: 193–6
  • Scirica B. M., Morrow D. A. Is C‐reactive protein an innocent bystander or proatherogenic culprit? The verdict is still out. Circulation 2006; 113: 2128–34
  • Dasu M. R., Devaraj S., Du Clos T. W., Jialal I. Biological effects of C‐reactive protein are not due to endotoxin contamination: evidence from toll‐like receptor 4 knock‐down human aortic endothelial cells. J Lipid Res 2007; 48: 509–12
  • Liuzzo G., Santamaria M., Biasucci L. M., Narducci M., Colafrancesco V., Porto A., et al. Persistent activation of nuclear factor kappa‐B signaling pathway in patients with unstable angina and elevated levels of C‐reactive protein: evidence for a direct proinflammatory effect of azide and lipopolysaccharide‐free C‐reactive protein on human monocytes via nuclear factor kappa‐B activation. J Am Coll Cardiol 2007; 49: 185–94
  • Doronzo G., Russo I., Trovati M., Anfossi G. Sodium azide in commercially available C‐reactive protein preparations does not influence matrix metalloproteinase‐2 synthesis and release in cultured human aortic vascular smooth muscle cells. Clin Chem 2006; 52: 1200–1
  • Heuertz R. M., Ahmed N., Webster R. O. Peptides derived from C‐reactive protein inhibit neutrophil alveolitis. J Immunol 1996; 156: 3412–7
  • Robey F. A., Ohura K., Futaki S., Fujii N., Yajima H., Goldman N., et al. Proteolysis of human C‐reactive protein produces peptides with potent immunomodulating activity. J Biol Chem 1987; 262: 7053–7
  • Shephard E. G., Beer S. M., Anderson R., Strachan A. F., Nel A. E., de Beer F. C. Generation of biologically active C‐reactive protein peptides by a neutral protease on the membrane of phorbol myristate acetate‐stimulated neutrophils. J Immunol 1989; 143: 2974–81
  • Yavin E. J., Fridkin M. Peptides derived from human C‐reactive protein inhibit the enzymatic activities of human leukocyte elastase and cathepsin G: use of overlapping peptide sequences to identify a unique inhibitor. J Peptide Res 1998; 51: 282–9
  • Zouki C., Beauchamp M., Baron C., Filep J. G. Prevention of in vitro neutrophil adhesion to endothelial cells through shedding of L‐selectin by C‐reactive protein and peptides derived from C‐reactive protein. J Clin Invest 1997; 100: 522–9
  • Zeller J. M., Landay A. L., Lint T. F., Gewurz H. Enhancement of human peripheral blood monocyte respiratory burst activity by aggregated C‐reactive protein. J Leukoc Biol 1986; 40: 769–83
  • Fernandez M. C., Mullenix M. C., Christner R. B., Mortensen R. F. A cell attachment peptide from human C‐reactive protein. J Cell Biochem 1992; 50: 83–92
  • Fiedel B. A., Gewurz H. Cleaved forms of C‐reactive protein are associated with platelet inhibition. J Immunol 1986; 136: 2551–5
  • Thomassen M. J., Meeker D. P., Deodhar S. D., Wiedemann H. P., Barna B. P. Activation of human monocytes and alveolar macrophages by a synthetic peptide of C‐reactive protein. J Immunother 1993; 13: 1–6
  • Du Clos T. W. Function of C‐reactive protein. Ann Med 2000; 32: 274–8
  • Mortensen R. F., Duszkiewicz J. A. Mediation of CRP‐dependent phagocytosis through mouse macrophage Fc‐receptors. J Immunol 1977; 119: 1611–6
  • Müller H., Fehr J. Binding of C‐reactive protein to human polymorphonuclear leukocytes: evidence for association of binding sites with Fc receptors. J Immunol 1986; 136: 2202–7
  • Bharadwaj D., Stein M‐P., Volzer M., Mold C., Du Clos T. W. The major receptor for C‐reactive protein on leukocytes is Fcγ receptor II. J Exp Med 1999; 190: 585–90
  • Saeland E., Van Royen A., Hendriksen K., Vilé‐Weekhout H., Rijkers G. T., Sanders L. A. M., et al. Human C‐reactive protein does not bind to FcγRIIa on phagocytic cells. J Clin Invest 2001; 107: 641–2
  • Du Clos T. W., Mold C., Edberg J. E., Kimberly R. P. Reply to: human C‐reactive protein does not bind to FcγRIIa on phagocytic cells. J Clin Invest 2001; 107: 643–3
  • Hundt M., Zielinska‐Skowronek M., Schmidt R. E. Lack of specific receptors for C‐reactive protein on white blood cells. Eur J Immunol 2001; 31: 3475–83
  • Chi M., Tridandapani S., Zhong W., Coggeshall K. M., Mortensen R. F. C‐reactive protein induces signaling through FcγRIIa on HL‐60 granulocytes. J Immunol 2002; 168: 1413–8
  • Rodriguez J. A., Bodman‐Smith K. B., Raynes J. G. Neutrophil responses to CRP are not dependent on polymorphism of human FcγRIIa (R131H). Clin Exp Immunol 2004; 138: 271–7
  • Williams T. N., Zhang C. X., Game B. A., He L., Huang Y. C‐reactive protein stimulates MMP‐1 expression in U937 histiocytes through FcγRII and extracellular signal‐regulated kinase pathway: an implication of CRP involvement in plaque destabilization. Arterioscler Thromb Vasc Biol 2004; 24: 61–6
  • Rocker C., Manolov D. E., Kuzmenkina E. V., Tron K., Slatosch H., Torzewski J., et al. Affinity of C‐reactive protein toward FcγRI is strongly enhanced by the γ‐chain. Am J Pathol 2007; 170: 755–63
  • Devaraj S., Du Clos T. W., Jialal I. Binding and internalization of C‐reactive protein by Fcγ receptors on human aortic endothelial cells mediates biological effects. Arterioscler Thromb Vasc Biol 2005; 25: 1359–63
  • Escribano‐Burgos M., Lopez‐Farre A., del Mar Gonzalez M., Macaya C., Garcia‐Mendez A., Mateos‐Caceres P. J., et al. Effect of C‐reactive protein on Fcγ receptor II in cultured bovine endothelial cells. Clin Sci 2005; 108: 85–91
  • Bang R., Marnell L., Mold C., Stein M‐P., Du Clos K. T., Chivington‐Buck C., et al. Analysis of binding sites in human C‐reactive protein for FcγRI, FcγRIIA, and C1q by site‐directed mutagenesis. J Biol Chem 2005; 280: 25095–102
  • Thomas‐Rudolf D., Du Clos T. W., Snapper C. M., Mold C. C‐reactive protein enhances immunity to Streptococcus pneumoniae by targeting uptake to FcγR on dendritic cells. J Immunol 2007; 178: 7283–91
  • Ryu J., Lee C. W., Shin J‐A., Park C‐S., Kim J. J., Park S‐J., et al. FcγRIIa mediates C‐reactive protein‐induced inflammatory responses of human vascular smooth muscle cells by activating NADPH oxidase 4. Cardiovasc Res 2007; 75: 555–65
  • Yang J., Wezeman M., Zhang X., Lin P., Wang M., Qian J., et al. Human C‐reactive protein binds activating Fcγ receptors and protects myeloma tumor cells from apoptosis. Cancer Cell 2007; 12: 252–65
  • Meuwissen M., van der Wal A. C., Niessen H. W. M., Koch K. T., de Winter R. J., van der Loos C. M., et al. Colocalization of intraplaque C reactive protein, complement, oxidised low density lipoprotein, and macrophages in stable and unstable angina and acute myocardial infarction. J Clin Pathol 2006; 59: 196–201
  • Torzewski M., Rist C., Mortensen R. F., Zwaka T. P., Bienek M., Waltenberger J., et al. C‐reactive protein in the arterial intima: role of C‐reactive protein receptor‐dependent monocyte recruitment in atherogenesis. Arterioscler Thromb Vasc Biol 2000; 20: 2094–9
  • Paul A., Ko K. W. S., Li L., Yechoor V., McCrory M. A., Szalai A. J., et al. C‐reactive protein accelerates the progression of atherosclerosis in apolipoprotein E‐deficient mice. Circulation 2004; 109: 647–55
  • Schwedler S. B., Amann K., Wernicke K., Krebs A., Nauck M., Wanner C., et al. Native C‐reactive protein increases whereas modified C‐reactive protein reduces atherosclerosis in apolipoprotein E‐knockout mice. Circulation 2005; 112: 1016–23
  • Bisoendial R. J., Kastelein J. J. P., Peters S. L. M., Levels J. H. M., Birjmohun R., Rotmans J. I., et al. Effects of CRP‐infusion on endothelial function and coagulation in normo‐ and hypercholesterolemic subjects. J Lipid Res 2007; 48: 952–60
  • Bisoendial R., Birjmohun R., Keller T., van Leuven S., Levels H., Levi M., et al. Letter to the editor. Circ Res 2005; 97: 115–6
  • Hirschfield G. M., Gallimore J. R., Kahan M. C., Hutchinson W. L., Sabin C. A., Benson G. M., et al. Transgenic human C‐reactive protein is not proatherogenic in apolipoprotein E‐deficient mice. Proc Natl Acad Sci U S A 2005; 102: 8309–14
  • Reifenberg K., Lehr H‐A., Baskal D., Wiese E., Schaefer S. C., Black S., et al. Role of C‐reactive protein in atherogenesis: can the apolipoprotein E knockout mouse provide the answer?. Arterioscler Thromb Vasc Biol 2005; 25: 1641–6
  • Trion A., de Maat M. P. M., Jukema J. W., van der Laarse A., Maas M. C., Offerman E. H., et al. No effect of C‐reactive protein on early atherosclerosis development in apolipoprotein E* 3‐Leiden /human C‐reactive protein transgenic mice. Arterioscler Thromb Vasc Biol 2005; 25: 1635–40
  • Trion A., de Maat M., Jukema W., Maas A., Offerman E., Havekes L., et al. Anti‐atherosclerotic effect of amlodipine, alone and in combination with atorvastatin, in APOE* 3‐leiden /hCRP transgenic mice. J Cardiovasc Pharmacol 2006; 47: 89–95
  • Verschuren L., Kleemann R., Offerman E. H., Szalai A. J., Emeis S. J., Princen H. M. G., et al. Effect of low dose atorvastatin versus diet‐induced cholesterol lowering on atherosclerotic lesion progression and inflammation in apolipoprotein E* 3‐leiden transgenic mice. Arterioscler Thromb Vasc Biol 2005; 25: 161–7
  • Bhakdi S., Torzewski M., Paprotka K., Schmitt S., Barsoom H., Suriyaphol P., et al. Possible protective role for C‐reactive protein in atherogenesis: complement activation by modified lipoproteins halts before detrimental terminal sequence. Circulation 2004; 109: 1870–6
  • Suresh M. V., Singh S. K., Ferguson D. A Jr., Agrawal A. Role of the property of C‐reactive protein to activate the classical pathway of complement in protecting mice from pneumococcal infection. J Immunol 2006; 176: 4369–74
  • Ng P. M. L., Le Saux A., Lee C. M., Tan N. S., Lu J., Thiel S., et al. C‐reactive protein collaborates with plasma lectins to boost immune response against bacteria. EMBO J 2007; 26: 3431–40
  • Kushner I., Rakita L., Kaplan M. H. Studies of acute‐phase protein. II. Localization of Cx‐reactive protein in heart in induced myocardial infarction in rabbits. J Clin Invest 1963; 42: 286–92
  • Krijnen P. A. J., Ciurana C., Cramer T., Hazes T., Meijer C. J. L. M., Visser C. A., et al. IgM colocalizes with complement and C‐reactive protein in infarcted human myocardium. J Clin Pathol 2005; 58: 382–8
  • Lagrand W. K., Niessen H. W. M., Wolbink G‐J., Jaspars L. H., Visser C. A., Verheugt F. W. A., et al. C‐reactive protein colocalizes with complement in human hearts during acute myocardial infarction. Circulation 1997; 95: 97–103
  • Barrett T. D., Hennan J. K., Marks R. M., Lucchesi B. R. C‐reactive‐protein‐associated increase in myocardial infarct size after ischemia/reperfusion. J Pharmacol Exp Ther 2002; 303: 1007–13
  • Griselli M., Herbert J., Hutchinson W. L., Taylor K. M., Sohail M., Krausz T., et al. C‐reactive protein and complement are important mediators of tissue damage in acute myocardial infarction. J Exp Med 1999; 190: 1733–40
  • Danenberg H. D., Szalai A. J., Swaminathan R. V., Peng L., Chen Z., Seifert P., et al. Increased thrombosis after arterial injury in human C‐reactive protein‐transgenic mice. Circulation 2003; 108: 512–5
  • Van den Berg C. W., Morgan B. P. Letter in response to A. Agrawal: CRP after 2004. Mol Immunol 2006; 43: 292–3
  • Kushner I., Agrawal A. Letter in response to A. Agrawal: CRP after 2004. Mol Immunol 2007; 44: 670–1
  • Rufail M. L., Ramage S. C., van Antwerpen R. C‐reactive protein inhibits in vitro oxidation of low‐density lipoprotein. FEBS Lett 2006; 580: 5155–60
  • Sammalkorpi K. T., Valtonen V. V., Maury C. P. J. Lipoproteins and acute phase response during acute infection: interrelationships between C‐reactive protein and serum amyloid‐A protein and lipoproteins. Ann Med 1990; 22: 397–401

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.