1,311
Views
39
CrossRef citations to date
0
Altmetric
Review Article

Peters’-plus syndrome is a congenital disorder of glycosylation caused by a defect in the β1,3-glucosyltransferase that modifies thrombospondin type 1 repeats

&
Pages 2-10 | Received 12 Dec 2007, Published online: 08 Jul 2009

References

  • Gabius H-J, Siebert H-C, Andre S, Jimenez-Barbero J, Rudiger H. Chemical biology of the sugar code. Chembiochem. 2004; 5: 740–64
  • Muramatsu T. Essential roles of carbohydrate signals in development, immune response and tissue functions, as revealed by gene targeting. J Biochem. 2000; 127: 171–6
  • Haltiwanger RS, Lowe JB. Role of glycosylation in development. Annu Rev Biochem. 2004; 73: 491–537
  • Kannagi R, Izawa M, Koike T, Miyazaki K, Kimura N. Carbohydrate-mediated cell adhesion in cancer metastasis and angiogenesis. Cancer Sci. 2004; 95: 377–84
  • Dube DH, Bertozzi CR. Glycans in cancer and inflammation—potential for therapeutics and diagnostics. Nat Rev Drug Discov. 2005; 4: 477–88
  • Breton C, Mucha J, Jeanneau C. Structural and functional features of glycosyltransferases. Biochimie. 2001; 83: 713–8
  • Breton C, Snajdrova L, Jeanneau C, Koca J, Imberty A. Structures and mechanisms of glycosyltransferases. Glycobiology. 2006; 16: 29R–37R
  • CAZy—Carbohydrate-active enzymes. Available at: www.cazy.org.
  • Jaeken J, Carchon H. Congenital disorders of glycosylation: a booming chapter in pediatrics. Curr Opin Pediatr. 2004; 16: 434–9
  • Jaeken J, Matthijs G. Congenital disorders of glycosylation: a rapidly expanding disease family. Annu Rev Genomics Hum Genet. 2007; 8: 261–78
  • Freeze HH. Congenital disorders of glycosylation: CDG-I, CDG-II, and beyond. Curr Mol Med. 2007; 7: 389–96
  • Muntoni F, Brockington M, Torelli S, Brown SC. Defective glycosylation in congenital muscular dystrophies. Curr Opin Neurol. 2004; 17: 205–9
  • Peters A. Ueber angeborene defektbildung der Descemetschen membran. Klin Monatsbl Augenheilkd. 1906;44:27–40 and 105–19.
  • Wenniger-Prick LJ, Hennekam RC. The Peters’ plus syndrome: a review. Ann Genet. 2002; 45: 97–103
  • van Schooneveld MJ, Delleman JW, Beemer FA, Bleeker-Wagemakers EM. Peters’-plus: a new syndrome. Ophthalmic Paediatr Genet. 1984; 4: 141–5
  • Online Mendelian Inheritance in Man (OMIM). Available at: http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=261540.
  • Lesnik Oberstein SA, Kriek M, White SJ, Kalf ME, Szuhai K, den Dunnen JT, et al. Peters Plus syndrome is caused by mutations in B3GALTL, a putative glycosyltransferase. Am J Hum Genet. 2006;79:562–6. Erratum in: Am J Hum Genet. 2006;79:985.
  • Heinonen TYK, Pasternack L, Lindfors K, Breton C, Gastinel LN, Mäki M, et al. A novel human glycosyltransferase: primary structure and characterization of the gene and transcripts. Biochem Biophys Res Commun. 2003; 309: 166–74
  • Halttunen T, Marttinen A, Rantala I, Kainulainen H, Mäki M. Fibroblasts and transforming growth factor β induce organization and differentiation of T84 human epithelial cells. Gastroenterology. 1996; 111: 1252–62
  • Lindfors K, Halttunen T, Huotari P, Nupponen N, Vihinen M, Visakorpi T, et al. Identification of novel transcription factor-like gene from human intestinal cells. Biochem Biophys Res Commun. 2000; 276: 660–6
  • Lindfors K, Halttunen T, Kainulainen H, Mäki M. Differentially expressed CC3/TIP30 and rab11 along in vivo and in vitro intestinal epithelial cell crypt-villus axis. Life Sci. 2001; 69: 1363–72
  • Sato T, Sato M, Kiyohara K, Sogabe M, Shikanai T, Kikuchi N, et al. Molecular cloning and characterization of a novel human β1,3-glucosyltransferase, which is localized at the endoplasmic reticulum and glucosylates O-linked fucosylglycan on thrombospondin type 1 repeat domain. Glycobiology. 2006; 16: 1194–206
  • Kozma K, Keusch JJ, Hegemann B, Luthet KB, Klein D, Hess D, et al. Identification and characterization of a β1,3-glucosyltransferase that synthesizes the Glc-β1,3-Fuc di-saccharide on thrombospondin type 1 repeats. J Biol Chem. 2006; 281: 36742–51
  • Kosaki R, Kamiishi A, Sugiyama R, Kawai M, Hasegawa T, Kosaki K. Congenital hypothyroidism in Peters plus syndrome. Ophthalmic Genet. 2006; 27: 67–9
  • Jacques C, Baris O, Prunier-Mirebeau D, Savagner F, Rodien P, Rohmer V, et al. Two-step differential expression analysis reveals a new set of genes involved in thyroid oncocytic tumors. J Clin Endocrinol Metab. 2005; 90: 2314–20
  • Heinonen TYK, Pelto-Huikko M, Pasternack L, Mäki M, Kainulainen H. Murine ortholog of the novel glycosyltransferase, B3GTL: primary structure, characterization of the gene and transcripts, and expression in tissues. DNA Cell Biol. 2006; 25: 465–74
  • Moloney DJ, Haltiwanger RS. The O-linked fucose glycosylation pathway: identification and characterization of a uridine diphosphoglucose: fucose-beta-1,3-glucosyltransferase activity from Chinese hamster ovary cells. Glycobiology. 1999; 9: 679–87
  • Hallgren P, Lundblad A, Svensson S. A new type of carbohydrate-protein linkage in a glycopeptide from normal human urine. J Biol Chem. 1975; 250: 5312–14
  • Hess D, Keusch JJ, Lesnik Oberstein SA, Hennekam RCM, Hofsteenge J. Peters plus syndrome is a new congenital disorder of glycosylation and involves defective O-glycosylation of thrombospondin type 1 repeats. J Biol Chem. 2008; 283: 7354–60
  • Shao L, Haltiwanger RS. O-fucose modifications of epidermal growth factor-like repeats and thrombospondin type 1 repeats: unusual modifications in unusual places. Cell Mol Life Sci. 2003; 60: 241–50
  • Luo Y, Nita-Lazar A, Haltiwanger RS. Two distinct pathways for O-fucosylation of epidermal growth factor-like or thrombospondin type 1 repeats. J Biol Chem. 2006; 281: 9385–92
  • Luo Y, Koles K, Vorndam W, Haltiwanger RS, Panin VM. Protein O-fucosyltransferase 2 adds O-fucose to thrombospondin type 1 repeats. J Biol Chem. 2006; 281: 9393–99
  • Moloney DJ, Panin VM, Johnston SH, Chen J, Shao L, Wilson R, et al. Fringe is a glycosyltransferase that modifies Notch. Nature. 2000; 406: 369–75
  • Rampal R, Luther KB, Haltiwanger RS. Notch signalling in normal and disease states: possible therapies related to glycosylation. Curr Mol Med. 2007; 7: 427–45
  • Adams JC, Tucker RP. The thrombospondin type 1 repeat (TSR) superfamily: diverse proteins with related roles in neuronal development. Dev Dyn. 2000; 218: 280–99
  • Tucker RP. The thrombospondin type 1 repeat superfamily. Int J Biochem Cell Biol. 2004; 36: 969–74
  • Adams JC, Lawler J. The thrombospondins. Int J Biochem Cell Biol. 2004; 36: 961–8
  • Tan K, Duquette M, Liu JH, Dong Y, Zhang R, Joachimiak A, et al. Crystal structure of the TSP-1 type 1 repeats: a novel fold and its biological implication. J Cell Biol. 2002; 159: 373–82
  • Hofsteenge J, Huwiler KG, Macek B, Hess D, Lawler J, Mosher DF, et al. C-mannosylation and O-fucosylation of the thrombospondin type 1 module. J Biol Chem. 2001; 276: 6485–98
  • Gonzalez de Peredo A, Klein D, Macek B, Hess D, Peter-Katalinic J, Hofsteenge J. C-mannosylation and o-fucosylation of thrombospondin type 1 repeats. Mol Cell Proteomics. 2002; 1: 11–8
  • Ricketts LM, Dlugosz M, Luther KB, Haltiwanger RS, Majerus EM. O-fucosylation is required for ADAMTS13 secretion. J Biol Chem. 2007; 282: 17014–23
  • Wang LW, Dlugosz M, Somerville RP, Raed M, Haltiwanger RS, Apte SS. O-fucosylation of thrombospondin type 1 repeats in ADAMTS-like-1/punctin-1 regulates secretion: implications for the ADAMTS superfamily. J Biol Chem. 2007; 282: 17024–31
  • Jimenez B, Volpert OV, Crawford SE, Febbraio M, Silverstein RL, Bouck N. Signals leading to apoptosis-mediated inhibition of neovascularization by thrombospondin-1. Nat Med. 2000; 6: 41–8
  • Zhang X, Lawler J. Thrombospondin-based antiangiogenic therapy. Microvasc Res. 2007; 74: 90–9
  • Dawson DW, Pearce SF, Zhong R, Silverstein RL, Frazier WA, Bouck NP. CD36 mediates the in vitro inhibitory effects of thrombospondin-1 on endothelial cells. J Cell Biol. 1997; 138: 707–17
  • Klar A, Baldassare M, Jessell TM. F-spondin: a gene expressed at high levels in the floor plate encodes a secreted protein that promotes neural cell adhesion and neurite extension. Cell. 1992; 69: 95–110
  • Burstyn-Cohen T, Tzarfaty V, Frumkin A, Feinstein Y, Stoeckli E, Klar A. F-spondin is required for accurate pathfinding of commissural axons at the floor plate. Neuron. 1999; 23: 233–46
  • Feinstein Y, Klar A. The neuronal class 2 TSR proteins F-spondin and Mindin: a small family with divergent biological activities. Int J Biochem Cell Biol. 2004; 36: 975–80
  • Zisman S, Marom K, Avraham O, Rinsky-Halivni L, Gai U, Kligun G, et al. Proteolysis and membrane capture of F-spondin generates combinatorial guidance cues from a single molecule. J Cell Biol. 2007; 178: 1237–49
  • Terai Y, Abe M, Miyamoto K, Koike M, Yamasaki M, Ueda M, et al. Vascular smooth muscle cell growth-promoting factor/F-spondin inhibits angiogenesis via the blockade of integrin αvβ3 on vascular endothelial cells. J Cell Physiol. 2001; 188: 394–402
  • Perdikoulis MV, Kishore U, Reid KBM. Expression and characterisation of the thrombospondin type 1 repeats of human properdin. Biochim Biophys Acta. 2001; 1548: 265–77
  • Higgins JM, Wiedemann H, Timpl R, Reid KB. Characterization of mutant forms of recombinant human properdin lacking single thrombospondin type 1 repeats. Identification of modules important for function. J Immunol. 1995; 155: 5777–85
  • Hourcade DE. The role of properdin in the assembly of the alternative pathway C3 convertases of complement. J Biol Chem. 2006; 281: 2128–32
  • Soejima K, Nakagaki T. Interplay between ADAMTS13 and von Willebrand factor in inherited and acquired thrombotic microangiopathies. Semin Hematol. 2005; 42: 56–62
  • Jones GC, Riley GP. ADAMTS proteinases: a multi-domain, multi-functional family with roles in extracellular matrix turnover and arthritis. Arthritis Res Ther. 2005; 7: 160–9
  • Hirohata S, Wang LW, Miyaqi M, Yan L, Seldin MF, Keene DR, et al. Punctin, a novel ADAMTS-like molecule, ADAMTSL-1, in extracellular matrix. J Biol Chem. 2002; 277: 12182–9
  • Meiniel O, Meiniel A. The complex multidomain organization of SCO-spondin protein is highly conserved in mammals. Brain Res Rev. 2007; 53: 321–7
  • Kaur B, Brat DJ, Devi NS, Van Meir EG. Vasculostatin, a proteolytic fragment of brain angiogenesis inhibitor 1, is an antiangiogenic and antitumorigenic factor. Oncogene. 2005; 24: 3632–42
  • Brigstock DR. Regulation of angiogenesis and endothelial cell function by connective tissue growth factor (CTGF) and cysteine-rich 61 (CYR61). Angiogenesis. 2002; 5: 153–65
  • Gobron S, Creveaux I, Meiniel R, Didier R, Herbert A, Bamdad M, et al. Subcommissural organ/Reissner's fiber complex: characterization of SCO-spondin, a glycoprotein with potent activity on neurite outgrowth. Glia. 2000; 32: 177–91
  • Kantor DB, Chivatakarn O, Peer KL, Oster SF, Inatani M, Hansen MJ, et al. Semaphorin 5A is a bifunctional axon guidance cue regulated by heparan and chondroitin sulfate proteoglycans. Neuron. 2004; 44: 961–75
  • Li W, Aurandt J, Jürgensen C, Rao Y, Guan KL. FAK and Src kinases are required for netrin-induced tyrosine phosphorylation of UNC-5. J Cell Sci. 2006; 119: 47–55
  • Round J, Stein E. Netrin signaling leading to directed growth cone steering. Curr Opin Neurobiol. 2007; 17: 15–21
  • Eichmann A, Makinen T, Alitalo K. Neural guidance molecules regulate vascular remodeling and vessel navigation. Genes Dev. 2005; 19: 1013–21
  • Fessler JH, Kramerova I, Kramerov A, Chen Y, Fessler LI. Papilin, a novel component of basement membranes, in relation to ADAMTS metalloproteases and ECM development. Int J Biochem Cell Biol. 2004; 36: 1079–84
  • Koo BH, Goff CL, Jungers KA, Vasanji A, O'Flaherty J, Weyman CM, et al. ADAMTS-like 2 (ADAMTSL2) is a secreted glycoprotein that is widely expressed during mouse embryogenesis and is regulated during skeletal myogenesis. Matrix Biol. 2007; 26: 431–41
  • Hall NG, Klenotic P, Anand-Apte B, Apte SS. ADAMTSL-3/punctin-2, a novel glycoprotein in extracellular matrix related to the ADAMTS family of metalloproteases. Matrix Biol. 2003; 22: 501–10
  • Park D, Tosello-Trampont AC, Elliott MR, Lu M, Haney LB, Ma Z, et al. BAI1 is an engulfment receptor for apoptotic cells upstream of the ELMO/Dock180/Rac module. Nature. 2007; 450: 430–4
  • Rus H, Cudrici C, Niculescu F. The role of the complement system in innate immunity. Immunol Res. 2005; 33: 103–12
  • Tong ZY, Brigstock DR. Intrinsic biological activity of the thrombospondin structural homology repeat in connective tissue growth factor. J Endocrinol. 2006; 188: R1–8
  • Arnott JA, Nuglozeh E, Rico MC, Arango-Hisijara I, Odgren PR, Safadi FF, et al. Connective tissue growth factor (CTGF/CCN2) is a downstream mediator for TGF-beta1-induced extracellular matrix production in osteoblasts. J Cell Physiol. 2007; 210: 843–52
  • Xu X, Dong C, Vogel BE. Hemicentins assemble on diverse epithelia in the mouse. J Histochem Cytochem. 2007; 55: 119–26

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.