880
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Can domestic wheat farming meet the climate change-induced challenges of national food security in Uzbekistan?

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 448-462 | Received 09 May 2023, Accepted 28 Nov 2023, Published online: 02 Jan 2024

References

  • Abdullaev, I., De Fraiture, C., Giordano, M., Yakubov, M., & Rasulov, A. (2009). Agricultural water use and trade in Uzbekistan: Situation and potential impacts of market liberalization. International Journal of Water Resources Development, 25(1), 47–63. https://doi.org/10.1080/07900620802517533
  • Ahmad, M., Nawaz, M., Iqbal, M., & Javed, S. (2014). Analyzing the impact of climate change on rice productivity in Pakistan. https://mpra.ub.uni-muenchen.de/72861/
  • Allison, P. D. (2009). Fixed effects regression models. SAGE publications.
  • Beaudoing, H., & Rodell, M. NASA/GSFC/HSL. (2020). GLDAS Noah land surface model L4 monthly 0.25 x 0.25 degree V2.1. Goddard Earth Sciences Data and Information Services Center (GES DISC). https://doi.org/10.5067/SXAVCZFAQLNO
  • Bekchanov, M. (2014). Efficient water allocation and water conservation policy modeling in the Aral Sea Basin [ PhD thesis]. University of Bonn.
  • Bekchanov, M., & Lamers, J. (2016). Economic costs of reduced irrigation water availability in Uzbekistan (Central Asia). Regional Environmental Change, 16(8), 2369–2387. https://doi.org/10.1007/s10113-016-0961-z
  • Bita, C. E., & Gerats, T. (2013). Plant tolerance to high temperature in a changing environment: Scientific fundamentals and production of heat stress-tolerant crops. Frontiers in Plant Science, 4, 273. https://doi.org/10.3389/fpls.2013.00273
  • Bobojonov, I., & Aw-Hassan, A. (2014). Impacts of climate change on farm income security in Central Asia: An integrated modeling approach. Agriculture Ecosystems and Environment, 188, 245–255. https://doi.org/10.1016/j.agee.2014.02.033
  • Bobojonov, I., Berg, E., Franz-Vasdeki, J., Martius, C., & Lamers, J. P. (2016). Income and irrigation water use efficiency under climate change: An application of spatial stochastic crop and water allocation model to Western Uzbekistan. Climate Risk Management, 13, 19–30. https://doi.org/10.1016/j.crm.2016.05.004
  • Bryla-Tressler, D., Syroka, J., Dana, J., Manuanorm, O. P., Lotsch, A., & Dick, W. (2011). Weather index insurance for agriculture: Guidance for development practitioners (Agriculture and Rural Development Discussion Paper, 50).
  • Chabot, P., & Tondel, F. (2011). A regional view of wheat markets and food security in Central Asia: With a focus on Afghanistan and Tajikistan. United Stated Agency for International Development Famine Early Warning Systems Network FEWS NET, United States.
  • Corwin, D. L. (2021). Climate change impacts on soil salinity in agricultural areas. European Journal of Soil Science, 72(2), 842–862. https://doi.org/10.1111/ejss.13010
  • Cui, X. (2020). Climate change and adaptation in agriculture: Evidence from US cropping patterns. Journal of Environmental Economics and Management, 101, 102306. https://doi.org/10.1016/j.jeem.2020.102306
  • Deschenes, O., & Greenstone, M. (2012). The economic impacts of climate change: Evidence from agricultural output and random fluctuations in weather: Reply. American Economic Review, 102(7), 3761–3773. https://doi.org/10.1257/aer.102.7.3761
  • Devkota, M., Martius, C., Gupta, R. K., Devkota, K. P., McDonald, A. J., & Lamers, J. P. A. (2015). Managing soil salinity with permanent bed planting in irrigated production systems in Central Asia. Agriculture Ecosystems and Environment, 202, 90–97. https://doi.org/10.1016/j.agee.2014.12.006
  • Djanibekov, N., Rudenko, I., Lamers, J., & Bobojonov, I. (2010). Pros and cons of cotton production in Uzbekistan. Case Study #7-9. In P. Pinstrup-Andersen & F. Cheng (Eds.), Food policy for developing countries: Case studies. Cornell University.
  • Djuraeva, M., Bobojonov, I., Kuhn, L., & Glauben, T. (2023). The impact of agricultural extension type and form on technical efficiency under transition: An empirical assessment of wheat production in Uzbekistan. Economic Analysis and Policy, 77, 203–221. https://doi.org/10.1016/j.eap.2022.11.008
  • Duan, Z., Wang, X., & Sun, L. (2022). Monitoring and mapping of soil salinity on the exposed seabed of the Aral Sea, Central Asia. Water, 14(9), 1438. https://doi.org/10.3390/w14091438
  • Eltazarov, S., Bobojonov, I., Kuhn, L., & Glauben, T. (2021). Mapping weather risk– Amulti-indicator analysis of satellite-based weather data for agricultural index insurance development in semi-arid and arid zones of Central Asia Climate services, 23, 100251. https://doi.org/10.1016/j.cliser.2021.100251
  • Eswar, D., Karuppusamy, R., & Chellamuthu, S. (2021). Drivers of soil salinity and their correlation with climate change. Current Opinion in Environmental Sustainability, 50, 310–318. https://doi.org/10.1016/j.cosust.2020.10.015
  • FAO. (2023). FAOSTAT. Value of agricultural production. https://www.fao.org/faostat/en/#data/QV
  • Frenken, K. (2013). Irrigation in Central Asia in Figures: AQUASTAT survey – 2012 (FAO Water Reports, 39).
  • Global Rainfall Map in Near-Real-Time (GSMaP_NRT). (2023). JAXA global rainfall watch’ was produced and distributed by the earth observation research center. Japan Aerospace Exploration Agency.
  • Gosling, S. N., & Arnell, N. W. (2016). A global assessment of the impact of climate change on water scarcity. Climate Change, 134(3), 371–385. https://doi.org/10.1007/s10584-013-0853-x
  • Greene, R., Timms, W., Rengasamy, P., Arshad, M., & Cresswell, R. (2016). Soil and aquifer salinization: Toward an integrated approach for salinity management of groundwater. In A. J. Jakeman, O. Barreteau, R. J. Hunt, J. D. Rinaudo, & A. Ross (Eds.), Integrated groundwater management: Concepts, approaches and challenges (pp. 377–412). Springer.
  • Guo, J. H., Liu, X. J., Zhang, Y., Shen, J. L., Han, W. X., Zhang, W. F., Zhang, Y., Zhang, W. F., Christie, P., Goulding, K. W. T., Vitousek, P. M., & Zhang, F. S. (2010). Significant acidification in major Chinese croplands. Science, 327(5968), 1008–1010. https://doi.org/10.1126/science.1182570
  • Hatfield, G. L., Stanish, W. D., & Hubley-Kozey, C. L. (2015). Relationship between knee adduction moment patterns extracted using principal component analysis and discrete measures with different amplitude normalizations: Implications for knee osteoarthritis progression studies. Clinical Biomechanics, 30(10), 1146–1152. https://doi.org/10.1016/j.clinbiomech.2015.08.011
  • Ibrakhimov, M., Khamzina, A., Forkutsa, I., Paluasheva, G., Lamers, J. P. A., Tischbein, B., Vlek, P. L. G., & Martius, C. (2007). Groundwater table and salinity: Spatial and temporal distribution and influence on soil salinization in Khorezm region (Uzbekistan, Aral Sea Basin). Irrigation and Drainage Systems, 21(3), 219–236. https://doi.org/10.1007/s10795-007-9033-3
  • IIASA. (2023). SSP database (Online). International Institute for Applied Systems Analysis. Retrieved July 4, 2023, from https://secure.iiasa.ac.at/web-apps/ene/SspDb
  • Intergovernmental Panel on Climate Change. (2022). Climate change 2022. Impacts, adaption and vulnerability. Summary for Policymakers. Retrieved June 31, 2023, from https://www.ipcc.ch/
  • Khalikulov, Z., Sharma, R. C., Amanov, A., & Morgounov, A. (2016). The history of wheat breeding in Uzbekistan (Vol. 3). World Wheat Book.
  • Khasanov, S., Kulmatov, R., Li, F., van Amstel, A., Bartholomeus, H., Aslanov, I., Sultonov, K., Kholov, N., Liu, H., & Chen, G. (2023). Impact assessment of soil salinity on crop production in Uzbekistan and its global significance. Agriculture Ecosystems and Environment, 342, 108262. https://doi.org/10.1016/j.agee.2022.108262
  • Kienzler, K. M., Djanibekov, N., & Lamers, J. P. (2011). An agronomic, economic and behavioral analysis of N application to cotton and wheat in post-Soviet Uzbekistan. Agricultural Systems, 104(5), 411–418. https://doi.org/10.1016/j.agsy.2011.01.005
  • Kirui, O., Kornher, L., & Bekchanov, M. (2023). Productivity growth and the role of mechanisation in African agriculture. Agrekon, 62(1), 80–97. https://doi.org/10.1080/03031853.2023.2176894
  • Kuhn, L., & Bobojonov, I. (2023). The role of risk rationing in rural credit demand and uptake: Lessons from Kyrgyzstan. Agricultural Finance Review, 83(1), 1–20. https://doi.org/10.1108/AFR-04-2021-0039
  • Lobell, D. B., Schlenker, W., & Costa-Roberts, J. (2011). Climate trends and global crop production since 1980. Science, 333(6042), 616–620. https://doi.org/10.1126/science.1204531
  • Lombardozzi, L., & Djanibekov, N. (2021). Can self-sufficiency policy improve food security? An inter-temporal assessment of the wheat value-chain in Uzbekistan. Eurasian Geography and Economics, 62(1), 1–20. https://doi.org/10.1080/15387216.2020.1744462
  • Lu, Y., Yu, L., Li, W. J., & Aleksandrova, M. (2022). Impacts and synergies of weather index insurance and microcredit in rural areas: A systematic review. Environmental Research Letters, 17(10), 103002. https://doi.org/10.1088/1748-9326/ac9244
  • Ministry of Water Resources of the Republic of Uzbekistan. (2020). Data on irrigation and salinity.
  • Mirzabaev, A. (2013). Impacts of weather variability and climate change on agricultural revenues in Central Asia. Quarterly Journal of International Agriculture, 52(892–2016–65182), 237–252. https://doi.org/10.22004/ag.econ.173648
  • Mukhopadhyay, R., Sarkar, B., Jat, H. S., Sharma, P. C., & Bolan, N. S. (2021). Soil salinity under climate change: Challenges for sustainable agriculture and food security. Journal of Environmental Management, 280, 111736. https://doi.org/10.1016/j.jenvman.2020.111736
  • Okur, B., & Örçen, N. (2020). Soil salinization and climate change. In Climate change and soil interactions (pp. 331–350). Elsevier. https://doi.org/10.1016/B978-0-12-818032-7.00012-6
  • O’Neill, B. C., Tebaldi, C., van Vuuren, D. P., Eyring, V., Friedlingstein, P., Hurtt, G., Knutti, R., Kriegler, E., Lamarque, J.-F., Lowe, J., Meehl, G. A., Moss, R., Riahi, K., & Sanderson, B. M. (2016). The scenario model intercomparison project (ScenarioMIP) for CMIP6. Geoscientific Model Development, 9(9), 3461–3482. https://doi.org/10.5194/gmd-9-3461-2016
  • Ortiz-Bobea, A., Ault, T. R., Carrillo, C. M., Chambers, R. G., & Lobell, D. B. (2021). Anthropogenic climate change has slowed global agricultural productivity growth. Nature Climate Change, 11(4), 306–312. https://doi.org/10.1038/s41558-021-01000-1
  • Ortiz-Bobea, A., & Tack, J. (2018). Is another genetic revolution needed to offset climate change impacts for US maize yields? Environmental Research Letters, 13(12), 124009. https://doi.org/10.1088/1748-9326/aae9b8
  • Reyer, C. P. O., Otto, I. M., Adams, S., Albrecht, T., Baarsch, F., Cartsburg, M., Coumou, D., Eden, A., Ludi, E., Marcus, R., Mengel, M., Mosello, B., Robinson, A., Schleussner, C. F., Serdeczny, O., & Stagl, J. (2017). Climate change impacts in Central Asia and their implications for development. Regional Environmental Change, 17(6), 1639–1650. https://doi.org/10.1007/s10113-015-0893-z
  • Rodell, M., Houser, P. R., Jambor, U., Gottschalck, J., Mitchell, K., Meng, C.-J., Arsenault, K., Cosgrove, B., Radakovich, J., Bosilovich, M., Entin, J. K., Walker, J. P., Lohmann, D., & Toll, D. (2004). The global land data assimilation system. Bulletin of the American Meteorological Society, 85(3), 381–394. https://doi.org/10.1175/BAMS-85-3-381
  • Sadozai, K. N., Khan, N. P., Jan, A. U., & Hameed, G. (2019). Assessing the impact of climate change on wheat productivity in Khyber Pakhtunkhwa, Pakistan. Sarhad Journal of Agriculture, 35(2), 594–601.
  • Schlenker, W., Hanemann, W. M., & Fisher, A. C. (2005). Will US agriculture really benefit from global warming? Accounting for irrigation in the hedonic approach. American Economic Review, 95(1), 395–406. https://doi.org/10.1257/0002828053828455
  • Sommer, R., Glazirina, M., Yuldashev, T., Otarov, A., Ibraeva, M., Martynova, L., Bekenov, M., Kholov, B., Ibragimov, N., Kobilov, R., Karaev, S., Sultonov, M., Khasanova, F., Esanbekov, M., Mavlyanov, D., Isaev, S., Abdurahimov, S., Ikramov, R., Shezdyukova, L., & de Pauw, E. (2013). Impact of climate change on wheat productivity in Central Asia. Agriculture Ecosystems and Environment, 178, 78–99. https://doi.org/10.1016/j.agee.2013.06.011
  • State Statistics Committee of Uzbekistan. (2020). Data on cropland area, crop yields, crop output.
  • State Statistics Committee of Uzbekistan. (2022). Online open data. Agriculture, demography. https://stat.uz/en/official-statistics/agriculture; https://stat.uz/en/official-statistics/demography
  • Van Vuuren, D. P., Edmonds, J. A., Kainuma, M., Riahi, K., Thomson, A. M., Hibbard, K. A., Hurtt, G., Kram, T., Krey, V., Lamarque, J.-F., Masui, T., Meinshausen, M., Nakicenovic, N., Smith, S. J., & Rose, S. K. (2011). The representative concentration pathways: An overview. Climatic Change, 109(1–2), 5–31. https://doi.org/10.1007/s10584-011-0148-z
  • Van Vuuren, D. P., Kriegler, E., O’Neill, B. C., Ebi, K. L., Riahi, K., Carter, T. R., Edmonds, J., Hallegatte, S., Kram, T., Mathur, R., & Winkler, H. (2014). A new scenario framework for climate change research: Scenario matrix architecture. Climatic Change, 122(3), 373–386. https://doi.org/10.1007/s10584-013-0906-1
  • World Bank. (2022). Climate change knowledge portal. Retrieved August 6, 2022, from https://climateknowledgeportal.worldbank.org/country/uzbekistan/climate-data-historical
  • Zhu, Z. L., & Chen, D. L. (2002). Nitrogen fertilizer use in China–Contributions to food production, impacts on the environment and best management strategies. Nutrient Cycling in Agroecosystems, 63(2/3), 117–127. https://doi.org/10.1023/A:1021107026067