3,009
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Cuffless Blood Pressure in clinical practice: challenges, opportunities and current limits.

, , , , &
Article: 2304190 | Received 01 Nov 2023, Accepted 07 Jan 2024, Published online: 21 Jan 2024

References

  • Roth GA, Mensah GA, Johnson CO, et al. Global Burden of Cardiovascular Diseases and Risk Factors, 1990-2019: Update From the GBD 2019 Study. J Am Coll Cardiol. 2020 Dec 22;76(25):1–23. doi: 10.1016/j.jacc.2020.11.010.
  • Mortality GBD, Causes of Death C. Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet. 2016 Oct 8;388(10053):1459–1544.
  • Suvila K, Niiranen TJ. Interrelations Between High Blood Pressure, Organ Damage, and Cardiovascular Disease: No More Room for Doubt. Hypertension. 2022 Mar;79(3):516–517. doi: 10.1161/HYPERTENSIONAHA.121.18786.
  • Abu Salman L, Cohen JB. Updates in hypertension: new trials, targets and ways of measuring blood pressure. Curr Opin Nephrol Hypertens. 2022 May 1;31(3):258–264. doi: 10.1097/MNH.0000000000000791.
  • Chow CK, Teo KK, Rangarajan S, et al. Prevalence, awareness, treatment, and control of hypertension in rural and urban communities in high-, middle-, and low-income countries. JAMA. 2013 Sep 4;310(9):959–68. doi: 10.1001/jama.2013.184182.
  • Chow EJ, Chen Y, Armstrong GT, et al. Underdiagnosis and Undertreatment of Modifiable Cardiovascular Risk Factors Among Survivors of Childhood Cancer. J Am Heart Assoc. 2022 Jun 21;11(12):e024735.
  • Zhang Y, Zhou C, Huang Z, Ye X. Study of cuffless blood pressure estimation method based on multiple physiological parameters. Physiol Meas. 2021 Jun 17;42(5). doi: 10.1088/1361-6579/abf889.
  • Sharma M, Rajput JS, Tan RS, Acharya UR. Automated Detection of Hypertension Using Physiological Signals: A Review. Int J Environ Res Public Health. 2021 May 29;18(11).
  • Reisner A, Shaltis PA, McCombie D, Asada HH. Utility of the photoplethysmogram in circulatory monitoring. Anesthesiology. 2008 May;108(5):950–8. doi: 10.1097/ALN.0b013e31816c89e1.
  • Kim CS, Carek AM, Inan OT, et al. Ballistocardiogram-Based Approach to Cuffless Blood Pressure Monitoring: Proof of Concept and Potential Challenges. IEEE Trans Biomed Eng. 2018 Nov;65(11):2384–2391. doi: 10.1109/TBME.2018.2797239.
  • Martin SL, Carek AM, Kim CS, et al. Weighing Scale-Based Pulse Transit Time is a Superior Marker of Blood Pressure than Conventional Pulse Arrival Time. Sci Rep. 2016 Dec 15;6:39273. doi: 10.1038/srep39273.
  • Bang J. Subcutaneously Insertable Cardiac Monitor for Atrial Fibrillation and HF Using ECG and Phonocardiography as Biomarkers. JACC Basic Transl Sci. 2023 Apr;8(4):380–382. doi: 10.1016/j.jacbts.2023.03.001.
  • Giordano N, Rosati S, Balestra G, Knaflitz M. A Wearable Multi-Sensor Array Enables the Recording of Heart Sounds in Homecare. Sensors (Basel). 2023 Jul 7;23(13). doi: 10.3390/s23136241.
  • Meusel M, Wegerich P, Bode B, et al. Measurement of Blood Pressure by Ultrasound-The Applicability of Devices, Algorithms and a View in Local Hemodynamics. Diagnostics (Basel). 2021 Dec 2;11(12). doi: 10.3390/diagnostics11122255.
  • Liu SH, Wu YR, Chen W, et al. Using Ballistocardiogram and Impedance Plethysmogram for Minimal Contact Measurement of Blood Pressure Based on a Body Weight-Fat Scale. Sensors (Basel). 2023 Feb 19;23(4). doi: 10.3390/s23042318.
  • Fukushima H, Kawanaka H, Bhuiyan MS, Oguri K. Cuffless blood pressure estimation using only photoplethysmography based on cardiovascular parameters. Annu Int Conf IEEE Eng Med Biol Soc. 2013;2013:2132–5. doi: 10.1109/EMBC.2013.6609955.
  • Schoettker P, Degott J, Hofmann G, et al. Blood pressure measurements with the OptiBP smartphone app validated against reference auscultatory measurements. Sci Rep. 2020 Oct 20;10(1):17827. doi: 10.1038/s41598-020-74955-4.
  • Nitzan M, Adar Y, Hoffman E, et al. Comparison of systolic blood pressure values obtained by photoplethysmography and by Korotkoff sounds. Sensors (Basel). 2013 Oct 31;13(11):14797–812. doi: 10.3390/s131114797.
  • Thomsen KK, Kouz K, Saugel B. Pulse wave analysis: basic concepts and clinical application in intensive care medicine. Curr Opin Crit Care. 2023 Jun 1;29(3):215–222. doi: 10.1097/MCC.0000000000001039.
  • Charlton PH, Kyriaco PA, Mant J, et al. Wearable Photoplethysmography for Cardiovascular Monitoring. Proc IEEE Inst Electr Electron Eng. 2022 Mar 11;110(3):355–381. doi: 10.1109/JPROC.2022.3149785.
  • Hofmann G, Proenca M, Degott J, et al. A novel smartphone app for blood pressure measurement: a proof-of-concept study against an arterial catheter. J Clin Monit Comput. 2023 Feb;37(1):249–259. doi: 10.1007/s10877-022-00886-2.
  • Jonathan E, Leahy M. Investigating a smartphone imaging unit for photoplethysmography. Physiol Meas. 2010 Nov;31(11):N79–83. doi: 10.1088/0967-3334/31/11/N01.
  • Liu ZD, Zhang YT, Zeng J, et al. Cuffless Blood Pressure Measurement using Smartwatches: A Large-scale Validation Study. IEEE J Biomed Health Inform. 2023 May 19;PP. doi: 10.1109/JBHI.2023.3278168.
  • Qin C, Wang X, Xu G, Ma X. Advances in Cuffless Continuous Blood Pressure Monitoring Technology Based on PPG Signals. Biomed Res Int. 2022;2022:8094351. doi: 10.1155/2022/8094351.
  • Bird K, Chan G, Lu H, et al. Assessment of Hypertension Using Clinical Electrocardiogram Features: A First-Ever Review. Front Med (Lausanne). 2020;7:583331. doi: 10.3389/fmed.2020.583331.
  • Landry C, Mukkamala R. Current evidence suggests that estimating blood pressure from convenient ECG waveforms alone is not viable. J Electrocardiol. 2023 Sep 9;81:153–155. doi: 10.1016/j.jelectrocard.2023.09.001.
  • Gordon JW. Certain Molar Movements of the Human Body produced by the Circulation of the Blood. J Anat Physiol. 1877 Apr;11(0 ):533–6.
  • Kim CS, Ober SL, McMurtry MS, et al. Ballistocardiogram: Mechanism and Potential for Unobtrusive Cardiovascular Health Monitoring. Sci Rep. 2016 Aug 9;6:31297. doi: 10.1038/srep31297.
  • Shin S, Mousavi A, Lyle S, et al. Posture-Dependent Variability in Wrist Ballistocardiogram-Photoplethysmogram Pulse Transit Time: Implication to Cuff-Less Blood Pressure Tracking. IEEE Trans Biomed Eng. 2022 Jan;69(1):347–355. doi: 10.1109/TBME.2021.3094200.
  • Ward LC. Electrical Bioimpedance: From the Past to the Future. J Electr Bioimpedance. 2021 Jan;12(1):1–2. doi: 10.2478/joeb-2021-0001.
  • Bera TK. Bioelectrical Impedance Methods for Noninvasive Health Monitoring: A Review. J Med Eng. 2014;2014:381251. doi: 10.1155/2014/381251.
  • Soukup L, Hruskova J, Jurak P, et al. Comparison of noninvasive pulse transit time determined from Doppler aortic flow and multichannel bioimpedance plethysmography. Med Biol Eng Comput. 2019 May;57(5):1151–1158. doi: 10.1007/s11517-018-01948-x.
  • Patterson RP. Fundamentals of impedance cardiography. IEEE Eng Med Biol Mag. 1989;8(1):35–8. doi: 10.1109/51.32403.
  • Wong MM, Pickwell-Macpherson E, Zhang YT. Impedance cardiography for cuffless and non-invasive measurement of systolic blood pressure. Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:800–2. doi: 10.1109/IEMBS.2009.5333521.
  • Sharman DL, Gomes CP, Rutherford JP. Improvement in blood pressure control with impedance cardiography-guided pharmacologic decision making. Congest Heart Fail. 2004 Jan-Feb;10(1):54–8. doi: 10.1111/j.1527-5299.2004.03226.x.
  • Lee K, Yoo HJ. Simultaneous Electrical Bio-Impedance Plethysmography at Different Body Parts: Continuous and Non-Invasive Monitoring of Pulse Wave Velocity. IEEE Trans Biomed Circuits Syst. 2021 Oct;15(5):1027–1038. doi: 10.1109/TBCAS.2021.3115021.
  • Kireev D, Sel K, Ibrahim B, et al. Continuous cuffless monitoring of arterial blood pressure via graphene bioimpedance tattoos. Nat Nanotechnol. 2022 Aug;17(8):864–870. doi: 10.1038/s41565-022-01145-w.
  • Inan OT, Migeotte PF, Park KS, et al. Ballistocardiography and seismocardiography: a review of recent advances. IEEE J Biomed Health Inform. 2015 Jul;19(4):1414–27. doi: 10.1109/JBHI.2014.2361732.
  • M. Das, T. Choudhary, L. N. Sharma, et al. Noninvasive Accelerometric Approach for Cuffless Continuous Blood Pressure Measurement. IEEE Transactions on Instrumentation and Measurement. 2021;70:1–9 doi: 10.1109/TIM.2021.3122182.
  • Soerensen K, Verma AK, Blaber A, et al., editors. Challenges in using seismocardiography for blood pressure monitoring. 2017 Computing in Cardiology (CinC); 2017 24-27 Sept. 2017.
  • Shandhi MMH, Fan J, Heller JA, et al. Estimation of Changes in Intracardiac Hemodynamics Using Wearable Seismocardiography and Machine Learning in Patients With Heart Failure: A Feasibility Study. IEEE Trans Biomed Eng. 2022 Aug;69(8):2443–2455. doi: 10.1109/TBME.2022.3147066.
  • Santucci F, Nobili M, Presti DL, et al. Waveform Similarity Analysis using Graph Mining for the Optimization of Sensor Positioning in Wearable Seismocardiography. IEEE Trans Biomed Eng. 2023 Apr 7;PP. doi: 10.1109/TBME.2023.3264940.
  • Nelson MR, Stepanek J, Cevette M, et al. Noninvasive measurement of central vascular pressures with arterial tonometry: clinical revival of the pulse pressure waveform? Mayo Clin Proc. 2010 May;85(5):460–72. doi: 10.4065/mcp.2009.0336.
  • Pressman GL, Newgard PM. A Transducer for the Continuous External Measurement of Arterial Blood Pressure. IEEE Trans Biomed Eng. 1963 Apr;10:73–81. doi: 10.1109/tbmel.1963.4322794.
  • Kemmotsu O, Ueda M, Otsuka H, et al. Arterial tonometry for noninvasive, continuous blood pressure monitoring during anesthesia. Anesthesiology. 1991 Aug;75(2):333–40. doi: 10.1097/00000542-199108000-00023.
  • Mishra S, Mohanty S, Ramadoss A. Functionality of Flexible Pressure Sensors in Cardiovascular Health Monitoring: A Review. ACS Sens. 2022 Sep 23;7(9):2495–2520. doi: 10.1021/acssensors.2c00942.
  • He F, You X, Wang W, et al. Recent Progress in Flexible Microstructural Pressure Sensors toward Human-Machine Interaction and Healthcare Applications. Small Methods. 2021 Mar;5(3):e2001041. doi: 10.1002/smtd.202001041.
  • Zhao L, Liang C, Huang Y, et al. Emerging sensing and modeling technologies for wearable and cuffless blood pressure monitoring. NPJ Digit Med. 2023 May 22;6(1):93. doi: 10.1038/s41746-023-00835-6.
  • Kim J, Chou EF, Le J, et al. Soft Wearable Pressure Sensors for Beat-to-Beat Blood Pressure Monitoring. Adv Healthc Mater. 2019 Jul;8(13):e1900109.
  • Chowdhury AH, Jafarizadeh B, Baboukani AR, et al. Monitoring and analysis of cardiovascular pulse waveforms using flexible capacitive and piezoresistive pressure sensors and machine learning perspective. Biosens Bioelectron. 2023 Jun 20;237:115449. doi: 10.1016/j.bios.2023.115449.
  • Rachim VP, Kang S, Baek JH, Park SM. Unobtrusive, Cuffless Blood Pressure Monitoring Using a Soft Polymer Sensor Array With Flexible Hybrid Electronics. IEEE Sensors Journal. 2021;21(8):10132–10142. doi: 10.1109/JSEN.2021.3059864.
  • Luo N, Dai W, Li C, et al. Flexible piezoresistive sensor patch enabling ultralow power cuffless blood pressure measurement. Advanced Functional Materials. 2016;26(8):1178–1187. doi: 10.1002/adfm.201504560.
  • Weber S, Strommenger D, Kertzscher U, Affeld K. Continuous blood pressure measurement with ultrasound. Biomed Tech (Berl). 2012 Sep 6;57 Suppl 1. doi: 10.1515/bmt-2012-4108.
  • Allen J, Zheng D, Kyriacou PA, Elgendi M. Photoplethysmography (PPG): state-of-the-art methods and applications. Physiol Meas. 2021 Nov 24;42(10). doi: 10.1088/1361-6579/ac2d82.
  • Finnegan E, Davidson S, Harford M, et al. Features from the photoplethysmogram and the electrocardiogram for estimating changes in blood pressure. Sci Rep. 2023 Jan 18;13(1):986. doi: 10.1038/s41598-022-27170-2.
  • Kasbekar RS, Ji S, Clancy EA, Goel A. Optimizing the input feature sets and machine learning algorithms for reliable and accurate estimation of continuous, cuffless blood pressure. Sci Rep. 2023 May 12;13(1):7750. doi: 10.1038/s41598-023-34677-9.
  • Chiang PH, Wong M, Dey S. Using Wearables and Machine Learning to Enable Personalized Lifestyle Recommendations to Improve Blood Pressure. IEEE J Transl Eng Health Med. 2021;9:2700513. doi: 10.1109/JTEHM.2021.3098173.
  • Samimi H, Dajani HR. Cuffless Blood Pressure Estimation Using Calibrated Cardiovascular Dynamics in the Photoplethysmogram. Bioengineering (Basel). 2022 Sep 6;9(9). doi: 10.3390/bioengineering9090446.
  • Azudin K, Gan KB, Jaafar R, Ja’afar MH. The Principles of Hearable Photoplethysmography Analysis and Applications in Physiological Monitoring-A Review. Sensors (Basel). 2023 Jul 18;23(14). doi: 10.3390/s23146484.
  • Wojciechowska W, Cwynar M, Gryglewska B, Kawecka-Jaszcz K. [Pulse wave analysis: from the basic sciences to clinical applications]. Przegl Lek. 2002;59 Suppl 3:9–14.
  • Davies JI, Struthers AD. Pulse wave analysis and pulse wave velocity: a critical review of their strengths and weaknesses. J Hypertens. 2003 Mar;21(3):463–72. doi: 10.1097/00004872-200303000-00004.
  • Hirata K, Kawakami M, O’Rourke MF. Pulse wave analysis and pulse wave velocity: a review of blood pressure interpretation 100 years after Korotkov. Circ J. 2006 Oct;70(10):1231–9. doi: 10.1253/circj.70.1231.
  • Shao J, Shi P, Hu S, et al. An Optimization Study of Estimating Blood Pressure Models Based on Pulse Arrival Time for Continuous Monitoring. J Healthc Eng. 2020;2020:1078251. doi: 10.1155/2020/1078251.
  • Salvi P, Grillo A, Parati G. Noninvasive estimation of central blood pressure and analysis of pulse waves by applanation tonometry. Hypertens Res. 2015 Oct;38(10):646–8. doi: 10.1038/hr.2015.78.
  • Rajala S, Ahmaniemi T, Lindholm H, Taipalus T. Pulse arrival time (PAT) measurement based on arm ECG and finger PPG signals - comparison of PPG feature detection methods for PAT calculation. Annu Int Conf IEEE Eng Med Biol Soc. 2017 Jul;2017:250–253. doi: 10.1109/EMBC.2017.8036809.
  • Lee J, Yang S, Lee S, Kim HC. Analysis of Pulse Arrival Time as an Indicator of Blood Pressure in a Large Surgical Biosignal Database: Recommendations for Developing Ubiquitous Blood Pressure Monitoring Methods. J Clin Med. 2019 Oct 24;8(11).
  • Dhillon MS, Banet MJ. Pulse Arrival Time Techniques. In: Solà J, Delgado-Gonzalo R, editors. The Handbook of Cuffless Blood Pressure Monitoring: A Practical Guide for Clinicians, Researchers, and Engineers. Cham: Springer International Publishing; 2019. p. 43–59.
  • Zhou ZB, Cui TR, Li D, et al. Wearable Continuous Blood Pressure Monitoring Devices Based on Pulse Wave Transit Time and Pulse Arrival Time: A Review. Materials (Basel). 2023 Mar 7;16(6). doi: 10.3390/ma16062133.
  • Ding X, Yan BP, Zhang YT, et al. Pulse Transit Time Based Continuous Cuffless Blood Pressure Estimation: A New Extension and A Comprehensive Evaluation. Sci Rep. 2017 Sep 14;7(1):11554. doi: 10.1038/s41598-017-11507-3.
  • Lubin M, Gerbelot R, Prada R, et al. Evaluation of a dual-PPG system for pulse transit time monitoring. Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:1349–1352.
  • Ding X, Zhang YT. Pulse transit time technique for cuffless unobtrusive blood pressure measurement: from theory to algorithm. Biomed Eng Lett. 2019 Feb;9(1):37–52. doi: 10.1007/s13534-019-00096-x.
  • Barvik D, Cerny M, Penhaker M, Noury N. Noninvasive Continuous Blood Pressure Estimation From Pulse Transit Time: A Review of the Calibration Models. IEEE Rev Biomed Eng. 2022;15:138–151. doi: 10.1109/RBME.2021.3109643.
  • Fung P, Dumont G, Ries C, et al. Continuous noninvasive blood pressure measurement by pulse transit time. Conf Proc IEEE Eng Med Biol Soc. 2004;2006:738–41.
  • Kachuee M, Kiani MM, Mohammadzade H, Shabany M. Cuffless Blood Pressure Estimation Algorithms for Continuous Health-Care Monitoring. IEEE Trans Biomed Eng. 2017 Apr;64(4):859–869. doi: 10.1109/TBME.2016.2580904.
  • Huynh TH, Jafari R, Chung WY. Noninvasive Cuffless Blood Pressure Estimation Using Pulse Transit Time and Impedance Plethysmography. IEEE Trans Biomed Eng. 2019 Apr;66(4):967–976. doi: 10.1109/TBME.2018.2865751.
  • Sharifi I, Goudarzi S, Khodabakhshi MB. A novel dynamical approach in continuous cuffless blood pressure estimation based on ECG and PPG signals. Artif Intell Med. 2019 Jun;97:143–151. doi: 10.1016/j.artmed.2018.12.005.
  • Miao F, Liu ZD, Liu JK, et al. Multi-Sensor Fusion Approach for Cuff-Less Blood Pressure Measurement. IEEE J Biomed Health Inform. 2020 Jan;24(1):79–91. doi: 10.1109/JBHI.2019.2901724.
  • Hu JR, Martin G, Iyengar S, et al. Validating cuffless continuous blood pressure monitoring devices. Cardiovasc Digit Health J. 2023 Feb;4(1):9–20. doi: 10.1016/j.cvdhj.2023.01.001.
  • Pilz N, Patzak A, Bothe TL. The pre-ejection period is a highly stress dependent parameter of paramount importance for pulse-wave-velocity based applications. Front Cardiovasc Med. 2023;10:1138356. doi: 10.3389/fcvm.2023.1138356.
  • Ding X-R, Liu J, Dai W-X, et al., editors. An Attempt to Define the Pulse Transit Time 2019; Singapore: Springer Singapore; (International Conference on Biomedical and Health Informatics.
  • Li J. Pulse Wave Velocity Techniques. In: Solà J, Delgado-Gonzalo R, editors. The Handbook of Cuffless Blood Pressure Monitoring: A Practical Guide for Clinicians, Researchers, and Engineers. Cham: Springer International Publishing; 2019. p. 61–73.
  • Ma Y, Choi J, Hourlier-Fargette A, et al. Relation between blood pressure and pulse wave velocity for human arteries. Proc Natl Acad Sci U S A. 2018 Oct 30;115(44):11144–11149. doi: 10.1073/pnas.1814392115.
  • Griggs D, Sharma M, Naghibi A, et al., editors. Design and development of continuous cuff-less blood pressure monitoring devices. 2016 IEEE SENSORS; 2016 30 Oct.-3 Nov. 2016. doi: 10.1109/ICSENS.2016.7808908.
  • Zhang Q, Shi Y, Teng D, et al. Pulse transit time-based blood pressure estimation using hilbert-huang transform. Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:1785–8.
  • Zuhair Sameen A, Jaafar R, Zahedi E, Kok Beng G. Cuff-less and continuous blood pressure measurement based on pulse transit time from carotid and toe photoplethysmograms. J Med Eng Technol. 2022 Oct;46(7):567–589. doi: 10.1080/03091902.2022.2077998.
  • Patzak A. Measuring blood pressure by a cuffless device using the pulse transit time. Int J Cardiol Hypertens. 2021 Mar;8:100072. doi: 10.1016/j.ijchy.2020.100072.
  • Gesche H, Grosskurth D, Kuchler G, Patzak A. Continuous blood pressure measurement by using the pulse transit time: comparison to a cuff-based method. Eur J Appl Physiol. 2012 Jan;112(1):309–15. doi: 10.1007/s00421-011-1983-3.
  • Tan I, Gnanenthiran SR, Chan J, et al. Evaluation of the ability of a commercially available cuffless wearable device to track blood pressure changes. J Hypertens. 2023 Apr 4.
  • Gholamhosseini H, Meintjes A, Baig M, Linden M. Smartphone-based Continuous Blood Pressure Measurement Using Pulse Transit Time. Stud Health Technol Inform. 2016;224:84–9.
  • Zheng YL, Ding XR, Poon CC, et al. Unobtrusive sensing and wearable devices for health informatics. IEEE Trans Biomed Eng. 2014 May;61(5):1538–54. doi: 10.1109/TBME.2014.2309951.
  • Bradley CK, Shimbo D, Colburn DA, et al. Cuffless Blood Pressure Devices. Am J Hypertens. 2022 May 10;35(5):380–387. doi: 10.1093/ajh/hpac017.
  • Jang Y, Seo JM, Ihm SH, et al. Feasibility, credence, and usefulness of out-of-office cuffless blood pressure monitoring using smartwatch: a population survey. Clin Hypertens. 2023 Jun 1;29(1):15. doi: 10.1186/s40885-023-00242-9.
  • Islam SMS, Chow CK, Daryabeygikhotbehsara R, et al. Wearable cuffless blood pressure monitoring devices: a systematic review and meta-analysis. Eur Heart J Digit Health. 2022 Jun;3(2):323–337. doi: 10.1093/ehjdh/ztac021.
  • Boehmer RD. Continuous, real-time, noninvasive monitor of blood pressure: Penaz methodology applied to the finger. J Clin Monit. 1987 Oct;3(4):282–7. doi: 10.1007/BF03337384.
  • Eeftinck Schattenkerk DW, van Lieshout JJ, van den Meiracker AH, et al. Nexfin noninvasive continuous blood pressure validated against Riva-Rocci/Korotkoff. Am J Hypertens. 2009 Apr;22(4):378–83. doi: 10.1038/ajh.2008.368.
  • Chin KY, Panerai RB. Comparative study of Finapres devices. Blood Press Monit. 2012 Aug;17(4):171–8. doi: 10.1097/MBP.0b013e328356e1b3.
  • Lee HY, Lee DJ, Seo J, et al. Smartphone/smartwatch-based cuffless blood pressure measurement: a position paper from the Korean Society of Hypertension. Clin Hypertens. 2021 Jan 25;27(1):4. doi: 10.1186/s40885-020-00158-8.
  • Singh M, Rao R, Gupta S. KardiaMobile for ECG Monitoring and Arrhythmia Diagnosis. Am Fam Physician. 2020 Nov 1;102(9):562–564.
  • Matsumura K, Rolfe P, Toda S, Yamakoshi T. Cuffless blood pressure estimation using only a smartphone. Sci Rep. 2018 May 8;8(1):7298. doi: 10.1038/s41598-018-25681-5.
  • Verkruysse W, Svaasand LO, Nelson JS. Remote plethysmographic imaging using ambient light. Opt Express. 2008 Dec 22;16(26):21434–45. doi: 10.1364/oe.16.021434.
  • Xuan Y, Barry C, De Souza J, et al. Ultra-low-cost mechanical smartphone attachment for no-calibration blood pressure measurement. Sci Rep. 2023 May 29;13(1):8105. doi: 10.1038/s41598-023-34431-1.
  • Yoon YH, Kim J, Lee KJ, et al. Blood Pressure Measurement Based on the Camera and Inertial Measurement Unit of a Smartphone: Instrument Validation Study. JMIR Mhealth Uhealth. 2023 Sep 8;11:e44147. doi: 10.2196/44147.
  • Djeldjli D, Bousefsaf F, Maaoui C, et al. Remote estimation of pulse wave features related to arterial stiffness and blood pressure using a camera. Biomedical Signal Processing and Control. 2021 2021/02/01/;64:102242. doi: 10.1016/j.bspc.2020.102242.
  • Guler S, Golparvar A, Ozturk O, et al. Optimal digital filter selection for remote photoplethysmography (rPPG) signal conditioning. Biomed Phys Eng Express. 2023 Jan 11;9(2). doi: 10.1088/2057-1976/acaf8a.
  • Landreani F, Caiani EG. Smartphone accelerometers for the detection of heart rate. Expert Rev Med Devices. 2017 Dec;14(12):935–948. doi: 10.1080/17434440.2017.1407647.
  • Landreani F, Martin-Yebra A, Casellato C, et al. Beat-to-beat heart rate detection by smartphone’s accelerometers: validation with ECG. Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:525–528.
  • Wegner FK, Eckardt L. Smartphone-based ECG devices: Beyond atrial fibrillation screening. Eur J Intern Med. 2022 Jan;95:111–112. doi: 10.1016/j.ejim.2021.09.017.
  • Balakrishnan G, Durand F, Guttag J, editors. Detecting Pulse from Head Motions in Video. 2013 IEEE Conference on Computer Vision and Pattern Recognition; 2013 23-28 June 2013.
  • Sagirova Z, Kuznetsova N, Gogiberidze N, et al. Cuffless Blood Pressure Measurement Using a Smartphone-Case Based ECG Monitor with Photoplethysmography in Hypertensive Patients. Sensors (Basel). 2021 May 19;21(10). doi: 10.3390/s21103525.
  • Yousefian P, Shin S, Mousavi AS, et al. Pulse Transit Time-Pulse Wave Analysis Fusion Based on Wearable Wrist Ballistocardiogram for Cuff-Less Blood Pressure Trend Tracking. IEEE Access. 2020;8:138077–138087. doi: 10.1109/ACCESS.2020.3012384.
  • Shandhi MMH, Semiz B, Hersek S, et al. Performance Analysis of Gyroscope and Accelerometer Sensors for Seismocardiography-Based Wearable Pre-Ejection Period Estimation. IEEE J Biomed Health Inform. 2019 Nov;23(6):2365–2374. doi: 10.1109/JBHI.2019.2895775.
  • Samol A, Bischof K, Luani B, et al. Single-Lead ECG Recordings Including Einthoven and Wilson Leads by a Smartwatch: A New Era of Patient Directed Early ECG Differential Diagnosis of Cardiac Diseases? Sensors (Basel). 2019 Oct 10;19(20). doi: 10.3390/s19204377.
  • Beck DT, Martin JS, Nichols WW, et al. Validity of a novel wristband tonometer for measuring central hemodynamics and augmentation index. Am J Hypertens. 2014 Jul;27(7):926–31. doi: 10.1093/ajh/hpt300.
  • Litvinova O, Bilir A, Parvanov ED, et al. Patent landscape review of non-invasive medical sensors for continuous monitoring of blood pressure and their validation in critical care practice. Front Med (Lausanne). 2023;10:1138051. doi: 10.3389/fmed.2023.1138051.
  • Carek AM, Conant J, Joshi A, et al. SeismoWatch: Wearable Cuffless Blood Pressure Monitoring Using Pulse Transit Time. Proc ACM Interact Mob Wearable Ubiquitous Technol. 2017 Sep;1(3). doi: 10.1145/3130905.
  • Prieto-Avalos G, Cruz-Ramos NA, Alor-Hernandez G, et al. Wearable Devices for Physical Monitoring of Heart: A Review. Biosensors (Basel). 2022 May 2;12(5). doi: 10.3390/bios12050292.
  • Bayoumy K, Gaber M, Elshafeey A, et al. Smart wearable devices in cardiovascular care: where we are and how to move forward. Nat Rev Cardiol. 2021 Aug;18(8):581–599. doi: 10.1038/s41569-021-00522-7.
  • Přibil J, Přibilová A, Frollo I. Comparative Measurement of the PPG Signal on Different Human Body Positions by Sensors Working in Reflection and Transmission Modes. Engineering Proceedings. 2020;2(1):69.
  • Sel K, Osman D, Huerta N, et al. Continuous cuffless blood pressure monitoring with a wearable ring bioimpedance device. NPJ Digit Med. 2023 Mar 30;6(1):59. doi: 10.1038/s41746-023-00796-w.
  • Haddad S, Boukhayma A, Di Pietrantonio G, et al. Photoplethysmography Based Blood Pressure Monitoring Using the Senbiosys Ring. Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:1609–1612.
  • Selvaraj N, Reddivari H. Feasibility of Noninvasive Blood Pressure Measurement using a Chest-worn Patch Sensor. Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:1–4. doi: 10.1109/EMBC.2018.8513211.
  • Li J, Zhang J, Jiang Y, et al. A Flexible and Miniaturized Chest Patch for Real-time PPG/ECG/Bio-Z Monitoring. Annu Int Conf IEEE Eng Med Biol Soc. 2022 Jul;2022:4312–4315.
  • Kumar S, Nagesh CM, Singh M, et al. Assessment of diagnostic accuracy of SanketLife - A wireless, pocket-sized ECG biosensor, in comparison to standard 12 lead ECG in the detection of cardiovascular diseases in a tertiary care setting. Indian Pacing Electrophysiol J. 2020 Mar-Apr;20(2):54–59. doi: 10.1016/j.ipej.2019.12.011.
  • Festo C, Vannevel V, Ali H, et al. Accuracy of a smartphone application for blood pressure estimation in Bangladesh, South Africa, and Tanzania. NPJ Digit Med. 2023 Apr 17;6(1):69. doi: 10.1038/s41746-023-00804-z.
  • Liu SH, Zhang BH, Chen W, et al. Cuffless and Touchless Measurement of Blood Pressure from Ballistocardiogram Based on a Body Weight Scale. Nutrients. 2022 Jun 20;14(12). doi: 10.3390/nu14122552.
  • Pandian PS, Mohanavelu K, Safeer KP, et al. Smart Vest: wearable multi-parameter remote physiological monitoring system. Med Eng Phys. 2008 May;30(4):466–77. doi: 10.1016/j.medengphy.2007.05.014.
  • Dias D, Paulo Silva Cunha J. Wearable Health Devices-Vital Sign Monitoring, Systems and Technologies. Sensors (Basel). 2018 Jul 25;18(8). doi: 10.3390/s18082414.
  • WANG Puling; PANG Yu; WU Baoming; LIU Pei; Design of non-invasive continuous blood pressure monitoring headband; Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition); Year 2015, Issue 2, Page 250–254
  • Schutte AE. The promise and pitfalls of novel cuffless blood pressure devices. Eur Heart J. 2022 Nov 1;43(41):4222–4223. doi: 10.1093/eurheartj/ehac474.
  • Avolio A, Cox J, Louka K, et al. Challenges Presented by Cuffless Measurement of Blood Pressure if Adopted for Diagnosis and Treatment of Hypertension. Pulse (Basel). 2022 Dec;10(1-4):34–45. doi: 10.1159/000522660.
  • Khan Mamun MMR, Sherif A. Advancement in the Cuffless and Noninvasive Measurement of Blood Pressure: A Review of the Literature and Open Challenges. Bioengineering (Basel). 2022 Dec 24;10(1). doi: 10.3390/bioengineering10010027.
  • Pandit JA, Lores E, Batlle D. Cuffless Blood Pressure Monitoring: Promises and Challenges. Clin J Am Soc Nephrol. 2020 Oct 7;15(10):1531–1538. doi: 10.2215/CJN.03680320.
  • Tamura T, Shimizu S, Nishimura N, Takeuchi M. Long-term stability of over-the-counter cuffless blood pressure monitors: a proposal. Health Technol (Berl). 2023;13(1):53–63. doi: 10.1007/s12553-023-00726-6.
  • Avolio A. The reality and serendipity of cuffless blood pressure monitoring. Hypertens Res. 2023 Apr 4. doi: 10.1038/s41440-023-01269-z.
  • Mukkamala R, Yavarimanesh M, Natarajan K, et al. Evaluation of the Accuracy of Cuffless Blood Pressure Measurement Devices: Challenges and Proposals. Hypertension. 2021 Nov;78(5):1161–1167. doi: 10.1161/HYPERTENSIONAHA.121.17747.
  • Yamanaka S, Morikawa K, Morita H, et al. Calibration-Free Cuffless Blood Pressure Estimation Based on a Population With a Diverse Range of Age and Blood Pressure. Front Med Technol. 2021;3:695356. doi: 10.3389/fmedt.2021.695356.
  • Stergiou GS, Mukkamala R, Avolio A, et al. Cuffless blood pressure measuring devices: review and statement by the European Society of Hypertension Working Group on Blood Pressure Monitoring and Cardiovascular Variability. J Hypertens. 2022 Aug 1;40(8):1449–1460. doi: 10.1097/HJH.0000000000003224.
  • Shimizu K. Development of Cuffless and Calibration-Less Blood Pressure Measurements. Journal of Hypertension. 2023 Jan;41:E296-E296. doi: 10.1097/01.hjh.0000915752.65336.54.
  • Fine J, Branan KL, Rodriguez AJ, et al. Sources of Inaccuracy in Photoplethysmography for Continuous Cardiovascular Monitoring. Biosensors (Basel). 2021 Apr 16;11(4). doi: 10.3390/bios11040126.
  • Wijshoff RW, Mischi M, Aarts RM. Reduction of Periodic Motion Artifacts in Photoplethysmography. IEEE Trans Biomed Eng. 2017 Jan;64(1):196–207. doi: 10.1109/TBME.2016.2553060.
  • Ding J, Tang Y, Chang R, et al. Reduction in the Motion Artifacts in Noncontact ECG Measurements Using a Novel Designed Electrode Structure. Sensors (Basel). 2023 Jan 14;23(2). doi: 10.3390/s23020956.
  • Spigulis J, Gailite L, Lihachev A, Erts R. Simultaneous recording of skin blood pulsations at different vascular depths by multiwavelength photoplethysmography. Appl Opt. 2007 Apr 1;46(10):1754–9. doi: 10.1364/ao.46.001754.
  • Fallow BA, Tarumi T, Tanaka H. Influence of skin type and wavelength on light wave reflectance. J Clin Monit Comput. 2013 Jun;27(3):313–7. doi: 10.1007/s10877-013-9436-7.
  • Ajmal  , Boonya-Ananta T, Rodriguez AJ, et al. Monte Carlo analysis of optical heart rate sensors in commercial wearables: the effect of skin tone and obesity on the photoplethysmography (PPG) signal. Biomed Opt Express. 2021 Dec 1;12(12):7445–7457. doi: 10.1364/BOE.439893.
  • Ray D, Collins T, Woolley S, Ponnapalli P. A Review of Wearable Multi-Wavelength Photoplethysmography. IEEE Rev Biomed Eng. 2023;16:136–151. doi: 10.1109/RBME.2021.3121476.
  • Hayes MJ, Smith PR. Artifact reduction in photoplethysmography. Appl Opt. 1998 Nov 1;37(31):7437–46. doi: 10.1364/ao.37.007437.
  • Maeda Y, Sekine M, Tamura T. Relationship between measurement site and motion artifacts in wearable reflected photoplethysmography. J Med Syst. 2011 Oct;35(5):969–76. doi: 10.1007/s10916-010-9505-0.
  • Natarajan K, Block RC, Yavarimanesh M, et al. Photoplethysmography Fast Upstroke Time Intervals Can Be Useful Features for Cuff-Less Measurement of Blood Pressure Changes in Humans. IEEE Transactions on Biomedical Engineering. 2022;69(1):53–62. doi: 10.1109/TBME.2021.3087105.
  • Mukkamala R, Shroff SG, Landry C, et al. The Microsoft Research Aurora Project: Important Findings on Cuffless Blood Pressure Measurement. Hypertension. 2023 Mar;80(3):534–540. doi: 10.1161/HYPERTENSIONAHA.122.20410.
  • Segers P, Kips J, Trachet B, et al. Limitations and pitfalls of non-invasive measurement of arterial pressure wave reflections and pulse wave velocity. Artery Research. 2009 2009-03-18T23:00:00.000Z;3(2):79–88. doi: 10.1016/j.artres.2009.02.006.
  • Park JB, Sharman JE, Li Y, et al. Expert Consensus on the Clinical Use of Pulse Wave Velocity in Asia. Pulse (Basel). 2022 Dec;10(1-4):1–18. doi: 10.1159/000528208.
  • Kao YH, Chao PCP, Wey CL. Design and Validation of a New PPG Module to Acquire High-Quality Physiological Signals for High-Accuracy Biomedical Sensing. IEEE Journal of Selected Topics in Quantum Electronics. 2019;25(1):1–10. doi: 10.1109/JSTQE.2018.2871604.
  • Zakrzewski AM, Anthony BW. Noninvasive Blood Pressure Estimation Using Ultrasound and Simple Finite Element Models. IEEE Trans Biomed Eng. 2018 Sep;65(9):2011–2022. doi: 10.1109/TBME.2017.2714666.
  • Byfield R, Miller M, Miles J, et al. Towards Robust Blood Pressure Estimation From Pulse Wave Velocity Measured by Photoplethysmography Sensors. IEEE Sensors Journal. 2022;22(3):2475–2483. doi: 10.1109/JSEN.2021.3134890.
  • Li JQ, Li R, Chen ZZ, et al. Design of a Continuous Blood Pressure Measurement System Based on Pulse Wave and ECG Signals. IEEE J Transl Eng Health Med. 2018;6:1900114. doi: 10.1109/JTEHM.2017.2788885.
  • Muntner P, Einhorn PT, Cushman WC, et al. Blood Pressure Assessment in Adults in Clinical Practice and Clinic-Based Research: JACC Scientific Expert Panel. J Am Coll Cardiol. 2019 Jan 29;73(3):317–335. doi: 10.1016/j.jacc.2018.10.069.
  • Hales CM, Gu Q, Ogden CL, Yanovski SZ. Use of prescription medications associated with weight gain among US adults, 1999-2018: A nationally representative survey. Obesity (Silver Spring). 2022 Jan;30(1):229–239. doi: 10.1002/oby.23299.
  • Reule S, Drawz PE. Heart rate and blood pressure: any possible implications for management of hypertension? Curr Hypertens Rep. 2012 Dec;14(6):478–84. doi: 10.1007/s11906-012-0306-3.
  • Schrumpf F, Frenzel P, Aust C, et al. Assessment of Non-Invasive Blood Pressure Prediction from PPG and rPPG Signals Using Deep Learning. Sensors (Basel). 2021 Sep 8;21(18). doi: 10.3390/s21186022.
  • Group SR, Lewis CE, Fine LJ, et al. Final Report of a Trial of Intensive versus Standard Blood-Pressure Control. N Engl J Med. 2021 May 20;384(20):1921–1930.
  • Sharman JE, O’Brien E, Alpert B, et al. Reply. J Hypertens. 2020 Apr;38(4):775. doi: 10.1097/HJH.0000000000002345.
  • van Helmond N, Martin SS, Plante TB. Is cuffless blood pressure measurement already here? J Hypertens. 2020 Apr;38(4):774–775. doi: 10.1097/HJH.0000000000002344.
  • IEEE Standard for Wearable Cuffless Blood Pressure Measuring Devices. IEEE Std 1708-2014. 2014:1–38.
  • IEEE Standard for Wearable, Cuffless Blood Pressure Measuring Devices - Amendment 1. IEEE Std 1708a-2019 (Amendment to IEEE Std 1708-2014). 2019:1–35.
  • ISO 81060-3:2022: Non-invasive sphygmomanometers - Part 3: Clinical investigation of continuous automated measurement type. International Organization for Standardization.
  • FDA. Factors to Consider When Making Benefit-Risk Determinations in Medical Device Premarket Approval and De Novo Classifications. U.S. Department of Health and Human Services - Food and Drug Administration. August 2019.
  • MDCG 2020-13 Clinical evaluation assessment report template. EU - Medical Devices Coordination Group Document. 2020. https://health.ec.europa.eu/system/files/2020-07/md_2020-13-cea-report-template_en_0.pdf
  • Alpert BS. Can ‘FDA-cleared’ blood pressure devices be trusted? A call to action. Blood Press Monit. 2017 Aug;22(4):179–181. doi: 10.1097/MBP.0000000000000279.
  • Burnier M, Kjeldsen SE, Narkiewicz K, Oparil S. Cuff-less measurements of blood pressure: are we ready for a change? Blood Press. 2021 Aug;30(4):205–207. doi: 10.1080/08037051.2021.1956178.
  • Landry C, Hedge ET, Hughson RL, et al. Accurate Blood Pressure Estimation During Activities of Daily Living: A Wearable Cuffless Solution. IEEE J Biomed Health Inform. 2021 Jul;25(7):2510–2520. doi: 10.1109/JBHI.2021.3054597.
  • Ye Y, He W, Cheng Y, et al. A Robust Random Forest-Based Approach for Heart Rate Monitoring Using Photoplethysmography Signal Contaminated by Intense Motion Artifacts. Sensors (Basel). 2017 Feb 16;17(2). doi: 10.3390/s17020385.
  • Hooseok L, Hoon K, Tharoeun T, Jinseok L. Multiple switching light sources based motion artifacts reduction in reflectance photoplethysmography. Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:3398–3401.
  • Ashisha GR, Anitha Mary X, editors. Advances in Photoplethysmogram and Electrocardiogram Signal Analysis for Wearable Applications 2021; Singapore: Springer Singapore; (Intelligence in Big Data Technologies—Beyond the Hype.
  • Charlton PH, Allen J, Bailon R, et al. The 2023 wearable photoplethysmography roadmap. Physiol Meas. 2023 Jul 26. doi: 10.1088/1361-6579/acead2.
  • Jing L, Yuan-Ting Z, Xiao-Rong D, et al. A preliminary study on multi-wavelength PPG based pulse transit time detection for cuffless blood pressure measurement. Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:615–618.
  • Lu Y, Peng H, Zhao J, et al. Ubiquitous blood pressure monitoring using EEG and PPG signals. Proceedings of the 2017 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2017 ACM International Symposium on Wearable Computers; Maui, Hawaii: Association for Computing Machinery; 2017. p. 257–260. doi: 10.1145/3123024.3123187.
  • Yao P, Xue N, Yin S, et al. Multi-Dimensional Feature Combination Method for Continuous Blood Pressure Measurement Based on Wrist PPG Sensor. IEEE J Biomed Health Inform. 2022 Aug;26(8):3708–3719. doi: 10.1109/JBHI.2022.3167059.
  • Haddad S, Boukhayma A, Caizzone A. Continuous PPG-Based Blood Pressure Monitoring Using Multi-Linear Regression. IEEE J Biomed Health Inform. 2022 May;26(5):2096–2105. doi: 10.1109/JBHI.2021.3128229.
  • Atef M, Xiyan L, Wang G, Lian Y, editors. PTT based continuous time non-invasive blood pressure system. 2016 IEEE 59th International Midwest Symposium on Circuits and Systems (MWSCAS); 2016 16-19 Oct. 2016. doi: 10.1109/MWSCAS.2016.7870022.
  • Stergiou GS, Avolio AP, Palatini P, et al. European Society of Hypertension recommendations for the validation of cuffless blood pressure measuring devices: European Society of Hypertension Working Group on Blood Pressure Monitoring and Cardiovascular Variability. J Hypertens. 2023 Jun 21.
  • Stergiou GS, Parati G, Kollias A, et al. Requirements for design and function of blood pressure measuring devices used for the management of hypertension: Consensus Statement by the European Society of Hypertension Working Group on Blood Pressure Monitoring and Cardiovascular Variability and STRIDE BP. J Hypertens. 2023 Jun 12.
  • Hartmann V, Liu H, Chen F, et al. Quantitative Comparison of Photoplethysmographic Waveform Characteristics: Effect of Measurement Site. Front Physiol. 2019;10:198. doi: 10.3389/fphys.2019.00198.
  • Degott J, Ghajarzadeh-Wurzner A, Hofmann G, et al. Smartphone based blood pressure measurement: accuracy of the OptiBP mobile application according to the AAMI/ESH/ISO universal validation protocol. Blood Press Monit. 2021 Dec 1;26(6):441–448. doi: 10.1097/MBP.0000000000000556.
  • Almeida TP, Cortes M, Perruchoud D, et al. Aktiia cuffless blood pressure monitor yields equivalent daytime blood pressure measurements compared to a 24-h ambulatory blood pressure monitor: Preliminary results from a prospective single-center study. Hypertens Res. 2023 Apr 3.
  • Doumas M, Tsioufis C, Fletcher R, et al. Time in Therapeutic Range, as a Determinant of All-Cause Mortality in Patients With Hypertension. J Am Heart Assoc. 2017 Nov 3;6(11).
  • Fatani N, Dixon DL, Van Tassell BW, et al. Systolic Blood Pressure Time in Target Range and Cardiovascular Outcomes in Patients With Hypertension. J Am Coll Cardiol. 2021 Mar 16;77(10):1290–1299. doi: 10.1016/j.jacc.2021.01.014.
  • Nagarajan N, Townsend RR. Time in therapeutic range: timely in hypertension therapeutics? J Hum Hypertens. 2023 Mar;37(3):244–247. doi: 10.1038/s41371-022-00800-y.
  • Koike T, Imamura T, Tomoda F, et al. Factors Associating with Non-Dipping Pattern of Nocturnal Blood Pressure in Patients with Essential Hypertension. J Clin Med. 2023 Jan 10;12(2).
  • Lyon SM, Hartz J, Huang Y, et al. Using Adult Ambulatory Blood Pressure Thresholds in Youth: Impact of Nocturnal Hypertension. Hypertension. 2023 Apr;80(4):e68–e70. doi: 10.1161/HYPERTENSIONAHA.122.20431.
  • Kart T, Alkhodari M, Lapidaire W, Leeson P. Modelling Relations Between Blood Pressure, Cardiovascular Phenotype and Clinical Factors Using Large Scale Imaging Data. Eur Heart J Cardiovasc Imaging. 2023 Jul 7. doi: 10.1093/ehjci/jead161.
  • Leoncini G, Viazzi F, Bonino B, Pontremoli R. Blood pressure phenotype: an evolving picture. Intern Emerg Med. 2020 Jan;15(1):19–20. doi: 10.1007/s11739-019-02157-6.
  • Arakawa T. Recent Research and Developing Trends of Wearable Sensors for Detecting Blood Pressure. Sensors (Basel). 2018 Aug 23;18(9). doi: 10.3390/s18092772.
  • Kefeng D, Zhiliang Q, Atef M, Guoxing W. A feature exploration methodology for learning based cuffless blood pressure measurement using photoplethysmography. Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:6385–6388.
  • Yang S, Morgan SP, Cho SY, et al. Non-invasive cuff-less blood pressure machine learning algorithm using photoplethysmography and prior physiological data. Blood Press Monit. 2021 Aug 1;26(4):312–320. doi: 10.1097/MBP.0000000000000534.
  • Sola J, Cortes M, Perruchoud D, et al. Guidance for the Interpretation of Continual Cuffless Blood Pressure Data for the Diagnosis and Management of Hypertension. Front Med Technol. 2022;4:899143. doi: 10.3389/fmedt.2022.899143.
  • Tamura T, Maeda Y, Sekine M, Yoshida M. Wearable Photoplethysmographic Sensors—Past and Present. Electronics. 2014;3(2):282–302. doi: 10.3390/electronics3020282.
  • Xu H, Liu J, Zhang J, et al. Flexible Organic/Inorganic Hybrid Near-Infrared Photoplethysmogram Sensor for Cardiovascular Monitoring. Adv Mater. 2017 Aug;29(31). doi: 10.1002/adma.201700975.
  • Welykholowa K, Hosanee M, Chan G, et al. Multimodal Photoplethysmography-Based Approaches for Improved Detection of Hypertension. J Clin Med. 2020 Apr 22;9(4).
  • Cheng CH, Wong KL, Chin JW, et al. Deep Learning Methods for Remote Heart Rate Measurement: A Review and Future Research Agenda. Sensors (Basel). 2021 Sep 20;21(18). doi: 10.3390/s21186296.