687
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Self-matching plasma sources using 2.45 GHz solid-state generators: microwave design and operating performance

, ORCID Icon, & ORCID Icon
Pages 237-258 | Received 30 Aug 2017, Accepted 01 Oct 2017, Published online: 03 Nov 2017

References

  • AMPLEON. 2017. Power LDMOS transistor. accessed 2017 August 15]. http://www.ampleon.com/products/rf-energy/2.45-ghz-transistors/
  • Antonin O, Latrasse L, Taylor AA, Michler J, Raynaud P, Rats D, Nelis T. 2015. A novel microwave source for collisional plasma for nano-crystalline diamond deposition. 32nd ICPIG; July 26–31; Iasi, Romania.
  • Antonin O, Taylor AA, Michler J, Raynaud P, Rats D, Latrasse L, Nelis T. 2015. Nanocrystalline diamond film deposited by Matrix Elementary Plasma Sources. Diamond and Carbon Materials; September 6–10; Bad Homburg, Germany.
  • Asmussen J. 1989. Electron cyclotron resonance microwave discharges for etching and thin‐film deposition. J Vac Sci Technol A. 7:883–893.
  • Bachmann PK, Hagemann H, Lade H, Leers D, Picht F, Wiechert D, Wilson H. 1994. Diamond chemical vapor deposition: gas compositions and film properties. Mat Res Soc Symp Proc. 339:267–277.
  • Bachmann PK, Leers D, Wiechert DU. 1991. Diamond chemical vapour deposition. J Phys IV. 2: C2-907–C2-913.
  • Chang J-S. 2016. Recent development of plasma pollution control technology: a critical review. Sci Technol of Adv Mater. 2:571–576.
  • Hagelaar GJM. 2017. Bolsig +. [ Accessed 2017 August 15]. https://fr.lxcat.net/home/
  • Lacoste A, Lagarde T, Bechu S, Arnal Y, Pelletier J. 2002. Multi-dipolar plasmas for uniform processing: physics, design and performance. Plasma Sources Sci Technol. 11:407–412.
  • Lagarde T, Arnal Y, Pelletier J. 1997b. Influence of the applied field frequency on the characteristics of Ar and SF6 diffusion plasmas sustained at electron cyclotron resonance above multipolar magnetic field structures. Plasma Sources Sci Technol. 6:386–393.
  • Lagarde T, Pelletier J, Arnal Y. 1997a. Influence of the multipolar magnetic field configuration on the density of distributed electron cyclotron resonance plasmas. Plasma Sources Sci Technol. 6:53–60.
  • Latrasse L, Lacoste A, Sánchez-López JC, Bès A, Rayar M, Pelletier J. 2009. High deposition rates of uniform films in tetramethylsilane-based plasmas generated by elementary microwave sources in matrix configuration. Surf Coat Technol. 203:2343–2349.
  • Latrasse L, Lacoste A, Sirou J, Pelletier J. 2007a. High density distributed microwave plasma sources in a matrix configuration concept, design and performance. Plasma Sources Sci Technol. 16:7–12.
  • Latrasse L, Radoiu M. 2017a. Elementary device for applying a microwave energy with coaxial applicator. Patent WO 2017060611.
  • Latrasse L, Radoiu M. 2017b. Elementary device for producing a plasma, having a coaxial applicator. Patent WO 2017060612.
  • Latrasse L, Radoiu M, Jacomino J-M, Grandemenge A. 2012. Facility for microwave treatment of a load. Patent WO 2012146870.
  • Latrasse L, Radoiu M, Lo J, Guillot P. 2017a. 2.45-GHz microwave plasma sources using solid state microwave generators. ECR-type plasma source. J Microw Power Electromagn Ener. 50:308–321.
  • Latrasse L, Radoiu M, Lo J, Guillot P. 2017b. 2.45-GHz microwave plasma sources using solid-state microwave generators. Collisional-type plasma source. J Microw Power Electromagn Energy. 51:43–58.
  • Latrasse L, Sadeghi N, Lacoste A, Bès A, Pelletier J. 2007b. Characterization of high density matrix microwave argon plasmas by laser absorption and electric probe diagnostics. J Phys D Appl Phys. 40:5177–5186.
  • Liou Y, Inspektor A, Weimer R, Messier R. 1989. Low temperature diamond deposition by microwave plasma enhanced chemical vapor deposition. Appl Phys Lett. 55:631–633.
  • McAdams R. 2001. Prospects for non-thermal atmospheric plasmas for pollution abatement. J Phys D: Appl Phys. 34:2810–2821.
  • Mehedi H-A, Achard J, Rats D, Brinza O, Tallaire A, Mille V, Silva F, Provent C, Gicquel A. 2014. Low temperature and large area deposition of nanocrystalline diamond films with distributed antenna array microwave-plasma reactor. Diam Relat Mater. 47:58–65.
  • Mitsuda Y, Kojima Y, Yoshida T, Akashi K. 1987. The growth of diamond in microwave plasma under low pressure. J Mater Sci. 22:1557–1562.
  • Mizuno A. 2007. Industrial applications of atmospheric non-thermal plasma in environmental remediation. Plasma Phys Control Fusion. 49:A1–A15.
  • Moisan M, Pelletier J. 1992. Microwave excited plasmas. Amsterdam: Elsevier.
  • Moisan M, Pelletier J. 2012a. Physics of collisional plasmas: introduction to high-frequency discharges. Dordrecht: Springer. p. 337–385.
  • Moisan M, Pelletier J. 2012b. Physics of collisional plasmas: introduction to high-frequency discharges. Dordrecht: Springer. p. 477.
  • Nishimura H, Matsuo S. 1991. Evaluation of the electron cyclotron resonance plasma process using a microwave twin-lead line probe. Jpn J Appl Phys. 2.30:L1767–L1769.
  • NXP. 2017. RF power transistors. [ accessed 2017 August 15]. http://www.nxp.com/pages/rf-broadcast-and-ism:RF-ISM
  • Orfanidis SJ. 2002. Electromagnetic waves and antennas. Piscataway (NJ): Rutgers University. Chapter 11, Transmission lines; p 547. [ accessed 2017 August 15]. http://www.ece.rutgers.edu/∼orfanidi/ewa
  • Pelletier J. 1995. Distributed ECR plasma sources. In:Popov O, editor. High density plasma sources: design, physics and performance. Park Ridge (NJ): Noyes Publications; p. 380–425.
  • Pelletier J, Béchu S, Bes A, Lacoste A. 2010. Device and method for producing and/or confining a plasma. Patent WO 2010049456.
  • Pelletier J, Lacoste A, Arnal Y, Lagarde T, Lincot C, Hertz D. 2001. New trends in DECR plasma technology: applications to novel duplex treatments and process combinations with extreme plasma specifications. Surf Coat Technol. 139:222–232.
  • Petasch W, Räuchle E, Weichart J, Bickmann H. 1995. Gigatron® — a new source for low-pressure plasmas. Surf Coat Technol. 74–75:200–205.
  • Phelps AV. 2008. Compilation of electroncrosse sections used by AV Phelps. Boulder (CO): JILA,: University of Colorado. [ accessed 2017 August 15]. http://jila.colorado.edu/∼avp/collision_data/electronneutral/ELECTRON.TXT
  • Pichot M, Durandet A, Pelletier J, Arnal Y, Vallier L. 1988. Microwave multipolar plasmas excited by distributed electron cyclotron resonance: concept and performance. Rev Sci Instrum. 59:1072–1075.
  • Pichot M, Pelletier J. 1992. Distributed electron cyclotron resonance (DECR) plasmas. In: Moisan M, Pelletier J, editors. Microwave excited plasmas. Amsterdam: Elsevier; p. 419–434.
  • Popov OA, Westner AO, Drybanski AZ. 1992. Characteristics of an 8 cm diam electron cyclotron resonance source for plasma processing. Rev Sci Instrum. 63:4432–4438.
  • Radoiu M, Hussain S. 2009. Microwave plasma removal of sulphur hexafluoride. J Hazard Mater. 164:39–45.
  • Radoiu M. 2004. Studies on atmospheric plasma abatement of PFCs. Radiat Phys Chem. 69:113–120.
  • Rayar M, Le Quoc H, Lacoste A, Latrasse L, Pelletier J. 2009. Characterization of hydrogen microwave plasmas produced by elementary sources in matrix configuration. Plasma Sources Sci Technol. 18:025013.
  • Silva F, Hassouni K. 2012. Plasma Micro-onde: sources et techniques de couplage. In: Lelièvre G, Mottin S, editors. Plasma et son environnement, plasmas froids en France et au Québec. Meudon: Mission Ressources et Compétences Technologiques [MRCT]; p. 187–227.
  • Stoner BR, Glass JT. 1992. Textured diamond growth on (100) beta-sic via microwave plasma chemical vapor deposition. Appl Phys Lett. 60:698–700.
  • Taylor A, Fendrych F, Fekete L, Vlček J, Řezáčová V, Petrák V, Krucký J, Nesládek M, Liehr M. 2011. Novel high frequency pulsed MW-linear antenna plasma-chemistry: routes towards large area, low pressure nanodiamond growth. Diam Relat Mater. 20:613–615.
  • Tsugawa K, Ishihara M, Kim J, Hasegawa M, Koga Y. 2006. Large area and low temperature nanodiamond coating by microwave plasma chemical vapor deposition. Diam Front Carbon Technol. 16:337–346.
  • Yamada H, Chayahara A, Ohmagari S, Mokuno Y. 2016. Factors to control uniformity of single crystal diamond growth by using microwave plasma CVD. Diam Relat Mater. 63:17–20.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.