267
Views
5
CrossRef citations to date
0
Altmetric
Review Articles

TREG Cells in Cancer: Beyond Classical Immunological Control

References

  • Ait-Oufella H, Salomon BL, Potteaux S, et al. (2006). Natural regulatory T cells control the development of atherosclerosis in mice. Nat Med, 12(2), 178–180. doi: 10.1038/nm1343.
  • Arpaia N, Green JA, Moltedo B, et al. (2015). A distinct function of regulatory T cells in tissue protection. Cell, 162(5), 1078–1089. doi: 10.1016/j.cell.2015.08.021.
  • Bapat SP, Myoung Suh J, Fang S, et al. (2015). Depletion of fat-resident Treg cells prevents age-associated insulin resistance. Nature, 528(7580), 137–141. doi: 10.1038/nature16151.
  • Bennett CL, Christie J, Ramsdell F, et al. (2001). The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat Genet, 27(1), 20–21. doi: 10.1038/83713.
  • Bilate AM, Lafaille JJ. (2012). Induced CD4+Foxp3+ regulatory T cells in immune tolerance. Annu Rev Immunol. 30, 733–758. doi: 10.1146/annurev-immunol-020711-075043.
  • Bos PD, Plitas G, Rudra D, et al. (2013). Transient regulatory T cell ablation deters oncogene-driven breast cancer and enhances radiotherapy. J Exp Med, 210(11), 2435–2466. doi: 10.1084/jem.20130762.
  • Bos PD, Rudensky AY. (2012). Treg cells in cancer: a case of multiple personality disorder. Sci Transl Med, 4(164), 164fs44. doi: 10.1126/scitranslmed.3005283.
  • Brunkow ME, Jeffery EW, Hjerrild KA, et al. (2001). Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat Genet, 27(1), 68–73. doi: 10.1038/83784.
  • Burzyn D, Kuswanto W, Kolodin D, et al. (2013). A special population of regulatory T cells potentiates muscle repair. Cell, 155(6), 1282–1295. doi: 10.1016/j.cell.2013.10.054.
  • Chatila TA, Blaeser F, Ho N, et al. (2000). JM2, encoding a fork head-related protein, is mutated in X-linked autoimmunity-allergic disregulation syndrome. J Clin Invest, 106(12), R75–81. doi: 10.1172/JCI11679.
  • Chodon T, Koya RC, Odunsi K. (2015). Active immunotherapy of cancer. Immunol Invest, 44(8), 817–836. doi: 10.3109/08820139.2015.1096684.
  • Cipolletta D, Cohen P, Spiegelman BM, et al. (2015). Appearance and disappearance of the mRNA signature characteristic of Treg cells in visceral adipose tissue: age, diet, and PPARgamma effects. Proc Natl Acad Sci USA, 112(2), 482–487. doi: 10.1073/pnas.1423486112.
  • Cipolletta D, Feuerer M, Li A, et al. (2012). PPAR-gamma is a major driver of the accumulation and phenotype of adipose tissue Treg cells. Nature, 486(7404), 549–553. doi: 10.1038/nature11132.
  • Curiel TJ, Coukos G, Zou L, et al. (2004). Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med, 10(9), 942–949. doi: 10.1038/nm1093.
  • Dvorak HF. (1986). Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med, 315(26), 1650–1659. doi: 10.1056/NEJM198612253152606.
  • Facciabene A, Peng X, Hagemann IS, et al. (2011). Tumour hypoxia promotes tolerance and angiogenesis via CCL28 and T(reg) cells. Nature, 475(7355), 226–230. doi: 10.1038/nature10169.
  • Feuerer M, Herrero L, Cipolletta D, et al. (2009). Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nat Med, 15(8), 930–939. doi: 10.1038/nm.2002.
  • Fontenot JD, Gavin MA, Rudensky AY. (2003). Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol, 4(4), 330–336. doi: 10.1038/ni904.
  • Fontenot JD, Rasmussen JP, Williams LM, et al. (2005). Regulatory T cell lineage specification by the forkhead transcription factor foxp3. Immunity, 22(3), 329–341. doi: 10.1016/j.immuni.2005.01.016.
  • Giatromanolaki A, Bates GJ, Koukourakis MI, et al. (2008). The presence of tumor-infiltrating FOXP3+ lymphocytes correlates with intratumoral angiogenesis in endometrial cancer. Gynecol Oncol, 110(2), 216–221. doi: 10.1016/j.ygyno.2008.04.021.
  • Gobert M, Treilleux I, Bendriss-Vermare N, et al. (2009). Regulatory T cells recruited through CCL22/CCR4 are selectively activated in lymphoid infiltrates surrounding primary breast tumors and lead to an adverse clinical outcome. Cancer Res, 69(5), 2000–2009. doi: 10.1158/0008-5472.CAN-08-2360.
  • Gupta S, Joshi K, Wig JD, Arora SK. (2007). Intratumoral FOXP3 expression in infiltrating breast carcinoma: Its association with clinicopathologic parameters and angiogenesis. Acta Oncol. 46(6), 792–797. doi: 10.1080/02841860701233443.
  • Hanahan D, Weinberg RA. (2000). The hallmarks of cancer. Cell, 100(1), 57–70.
  • Hanahan D, Weinberg RA. (2011). Hallmarks of cancer: the next generation. Cell, 144(5), 646–674. doi: 10.1016/j.cell.2011.02.013.
  • Hansen W, Hutzler M, Abel S, et al. (2012). Neuropilin 1 deficiency on CD4+Foxp3+ regulatory T cells impairs mouse melanoma growth. J Exp Med, 209(11), 2001–2016. doi: 10.1084/jem.20111497.
  • Hindley JP, Ferreira C, Jones E, et al. (2011). Analysis of the T-cell receptor repertoires of tumor-infiltrating conventional and regulatory T cells reveals no evidence for conversion in carcinogen-induced tumors. Cancer Res, 71(3), 736–746. doi: 10.1158/0008-5472.CAN-10-1797.
  • Hoeppli RE, Wu D, Cook L, Levings MK. (2015). The environment of regulatory T cell biology: cytokines, metabolites, and the microbiome. Front Immunol, 6, 61. doi: 10.3389/fimmu.2015.00061.
  • Hori S, Nomura T, Sakaguchi S. (2003). Control of regulatory T cell development by the transcription factor Foxp3. Science, 299(5609), 1057–1061. doi: 10.1126/science.1079490.
  • Josefowicz SZ, Lu LF, Rudensky AY. (2012). Regulatory T cells: mechanisms of differentiation and function. Annu Rev Immunol. 30, 531–564. doi: 10.1146/annurev.immunol.25.022106.141623.
  • Khattri R, Cox T, Yasayko SA, Ramsdell F. (2003). An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nat Immunol, 4(4), 337–342. doi: 10.1038/ni909.
  • Kim J, Lahl K, Hori S, et al. (2009). Cutting edge: depletion of Foxp3+ cells leads to induction of autoimmunity by specific ablation of regulatory T cells in genetically targeted mice. J Immunol, 183(12), 7631–7634. doi: 10.4049/jimmunol.0804308.
  • Kim SJ, Ha GH, Kim SH, Kang CD. (2014). Combination of cancer immunotherapy with clinically available drugs that can block immunosuppressive cells. Immunol Invest, 43(6), 517–534. doi: 10.3109/08820139.2013.857352.
  • Klages K, Mayer CT, Lahl K, et al. (2010). Selective depletion of Foxp3+ regulatory T cells improves effective therapeutic vaccination against established melanoma. Cancer Res, 70(20), 7788–7799. doi: 10.1158/0008-5472.CAN-10-1736.
  • Klingenberg R, Gerdes N, Badeau RM, et al. (2013). Depletion of FOXP3+ regulatory T cells promotes hypercholesterolemia and atherosclerosis. J Clin Invest. 123(3), 1323–1334. doi: 10.1172/JCI63891.
  • Kolodin D, van Panhuys N, Li C, Magnuson AM, et al. (2015). Antigen- and cytokine-driven accumulation of regulatory T cells in visceral adipose tissue of lean mice. Cell Metab, 21(4), 543–557. doi: 10.1016/j.cmet.2015.03.005.
  • Kuswanto W, Burzyn D, Panduro M, et al. (2016). Poor repair of skeletal muscle in aging mice reflects a defect in local, interleukin-33-dependent accumulation of regulatory T cells. Immunity, 44(2), 355–367. doi: 10.1016/j.immuni.2016.01.009.
  • Ladoire S, Martin F, Ghiringhelli F. (2011). Prognostic role of FOXP3+ regulatory T cells infiltrating human carcinomas: the paradox of colorectal cancer. Cancer Immunol Immunother, 60(7), 909–918. doi: 10.1007/s00262-011-1046-y.
  • Li B, Lalani AS, Harding TC, et al. (2006). Vascular endothelial growth factor blockade reduces intratumoral regulatory T cells and enhances the efficacy of a GM-CSF-secreting cancer immunotherapy. Clin Cancer Res, 12(22), 6808–16. doi: 10.1158/1078-0432.CCR-06-1558.
  • Li X, Kostareli E, Suffner J, et al. (2010). Efficient Treg depletion induces T-cell infiltration and rejection of large tumors. Eur J Immunol, 40(12), 3325–3335. doi: 10.1002/eji.201041093.
  • Liu C, Workman CJ, Vignali DA. (2016). Targeting Regulatory T Cells in Tumors. FEBS J. doi: 10.1111/febs.13656.
  • Liu VC, Wong LY, Jang T, et al. (2007). Tumor evasion of the immune system by converting CD4+CD25- T cells into CD4+CD25+ T regulatory cells: role of tumor-derived TGF-beta. J Immunol 178(5), 2883–2892.
  • Luo CT, Liao W, Dadi S, et al. (2016). Graded Foxo1 activity in Treg cells differentiates tumour immunity from spontaneous autoimmunity. Nature, 529(7587), 532–536. doi: 10.1038/nature16486.
  • Malchow S, Leventhal DS, Nishi S, et al. (2013). Aire-dependent thymic development of tumor-associated regulatory T cells. Science, 339(6124), 1219–1224. doi: 10.1126/science.1233913.
  • Meng X, Yang J, Dong M, et al. (2016). Regulatory T cells in cardiovascular diseases. Nat Rev Cardiol, 13(3), 167–179. doi: 10.1038/nrcardio.2015.169.
  • Nishikawa H, Sakaguchi S. (2010). Regulatory T cells in tumor immunity. Int J Cancer, 127(4), 759–767. doi: 10.1002/ijc.25429.
  • Rudensky AY. (2011). Regulatory T cells and Foxp3. Immunol Rev, 241(1), 260–268. doi: 10.1111/j.1600-065X.2011.01018.x.
  • Sakaguchi S, Sakaguchi N, Asano M, et al. (1995). Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol, 155(3), 1151–1164.
  • Schreiber RD, Old LJ, Smyth MJ. (2011). Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science, 331(6024), 1565–1570. doi: 10.1126/science.1203486.
  • Suzuki H, Onishi H, Wada J, et al. (2010). VEGFR2 is selectively expressed by FOXP3high CD4+ Treg. Eur J Immunol, 40(1), 197–203. doi: 10.1002/eji.200939887.
  • Tan MC, Goedegebuure PS, Belt BA, et al. (2009). Disruption of CCR5-dependent homing of regulatory T cells inhibits tumor growth in a murine model of pancreatic cancer. J Immunol, 182(3), 1746–1755.
  • Teng MW, Ngiow SF, von Scheidt B, et al. (2010). Conditional regulatory T-cell depletion releases adaptive immunity preventing carcinogenesis and suppressing established tumor growth. Cancer Res, 70(20), 7800–7809. doi: 10.1158/0008-5472.CAN-10-1681.
  • Terme M, Pernot S, Marcheteau E, et al. (2013). VEGFA-VEGFR pathway blockade inhibits tumor-induced regulatory T-cell proliferation in colorectal cancer. Cancer Res, 73(2), 539–549. doi: 10.1158/0008-5472.CAN-12-2325.
  • Valzasina B, Piconese S, Guiducci C, Colombo MP. (2006). Tumor-induced expansion of regulatory T cells by conversion of CD4+CD25- lymphocytes is thymus and proliferation independent. Cancer Res, 66(8), 4488–4495. doi: 10.1158/0008-5472.CAN-05-4217.
  • Vignali DA, Collison LW, Workman CJ. (2008). How regulatory T cells work. Nat Rev Immunol. 8(7), 523–532. doi: 10.1038/nri2343.
  • Wang C, Lee JH, Kim CH. (2012). Optimal population of FoxP3+ T cells in tumors requires an antigen priming-dependent trafficking receptor switch. PLoS One. 7(1), e30793. doi: 10.1371/journal.pone.0030793.
  • Wildin RS, Ramsdell F, Peake J, et al. (2001). X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy. Nat Genet, 27(1), 18–20. doi: 10.1038/83707.
  • Zhou G, Levitsky HI. (2007). Natural regulatory T cells and de novo-induced regulatory T cells contribute independently to tumor-specific tolerance. J Immunol, 178(4), 2155–2162.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.